An MPC/hybrid system approach to traction control

This paper describes a hybrid model and a model predictive control (MPC) strategy for solving a traction control problem. The problem is tackled in a systematic way from modeling to control synthesis and implementation. The model is described first in the Hybrid Systems Description Language to obtain a mixed-logical dynamical (MLD) hybrid model of the open-loop system. For the resulting MLD model, we design a receding horizon finite-time optimal controller. The resulting optimal controller is converted to its equivalent piecewise affine form by employing multiparametric programming techniques, and finally experimentally tested on a car prototype. Experiments show that good and robust performance is achieved in a limited development time by avoiding the design of ad hoc supervisory and logical constructs usually required by controllers developed according to standard techniques.

[1]  Panos M. Pardalos,et al.  Modeling and integer programming techniques applied to propositional calculus , 1990, Comput. Oper. Res..

[2]  M. Tomizuka,et al.  Discrete-time controller design for robust vehicle traction , 1990, IEEE Control Systems Magazine.

[3]  Masayoshi Tomizuka,et al.  An Adaptive Sliding Mode Vehicle Traction Controller Design , 1990, 1990 American Control Conference.

[4]  R. Raman,et al.  RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 1991 .

[5]  M. Tomizuka,et al.  Fuzzy Logic Traction Controllers and Their Effect on Longitudinal Vehicle Platoon Systems , 1996 .

[6]  Ashitava Ghosal,et al.  Modeling of slip for wheeled mobile robots , 1995, IEEE Trans. Robotics Autom..

[7]  Georg F. Mauer,et al.  A fuzzy logic controller for an ABS braking system , 1995, IEEE Trans. Fuzzy Syst..

[8]  A Bellini Analog fuzzy implementation of a vehicle traction sliding-mode control , 1996 .

[9]  Fredrik Gustafsson,et al.  Slip-based tire-road friction estimation , 1997, Autom..

[10]  Michael Glenn Fodor,et al.  Active control of vehicle dynamics , 1998, 17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.98CH36267).

[11]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[12]  Alberto Bemporad,et al.  Piecewise linear optimal controllers for hybrid systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[13]  J. Asgari,et al.  Automotive mechatronic systems , 2000 .

[14]  Efstratios N. Pistikopoulos,et al.  An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems , 2000, Ann. Oper. Res..

[15]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[16]  Alberto Bemporad,et al.  A Hybrid Approach to Traction Control , 2001, HSCC.

[17]  Alberto Bemporad,et al.  A hybrid system approach to modeling and optimal control of DISC engines , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[18]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[19]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[20]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[21]  A. Bemporad,et al.  Data classification and parameter estimation for the identification of piecewise affine models , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[22]  Alberto Bemporad,et al.  HYSDEL-a tool for generating computational hybrid models for analysis and synthesis problems , 2004, IEEE Transactions on Control Systems Technology.

[23]  Alberto Bemporad,et al.  Dynamic programming for constrained optimal control of discrete-time linear hybrid systems , 2005, Autom..

[24]  Francesco Borrelli,et al.  Constrained Optimal Control of Linear and Hybrid Systems , 2003, IEEE Transactions on Automatic Control.