The partitioned element method in computational solid mechanics
暂无分享,去创建一个
[1] Markus H. Gross,et al. Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.
[2] Jiun-Shyan Chen,et al. A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .
[3] I. Babuska,et al. The generalized finite element method , 2001 .
[4] K. Y. Dai,et al. A Smoothed Finite Element Method for Mechanics Problems , 2007 .
[5] Glaucio H. Paulino,et al. Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .
[6] Qinghui Zhang. Theoretical analysis of numerical integration in Galerkin meshless methods , 2011 .
[7] S. Padmanabhan,et al. Implicit boundary method for finite element analysis using non‐conforming mesh or grid , 2008 .
[8] N. Sukumar,et al. Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .
[9] M. M. Rashid,et al. A three‐dimensional finite element method with arbitrary polyhedral elements , 2006 .
[10] Guirong Liu,et al. Adaptive analysis using the node‐based smoothed finite element method (NS‐FEM) , 2011 .
[11] Joseph E. Bishop,et al. Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .
[12] Elías Cueto,et al. A comparative study on the performance of meshless approximations and their integration , 2011 .
[13] Friedrich Stummel,et al. The Generalized Patch Test , 1979 .
[14] Jean B. Lasserre,et al. Integration on a convex polytope , 1998 .
[15] Zhongci Shi. The F-E-M test for convergence of nonconforming finite elements , 1987 .
[16] Hung Nguyen-Xuan,et al. An n‐sided polygonal edge‐based smoothed finite element method (nES‐FEM) for solid mechanics , 2010 .
[17] N. Sukumar,et al. Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .
[18] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[19] Stéphane Bordas,et al. Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .
[20] Ted Belytschko,et al. Structured extended finite element methods for solids defined by implicit surfaces , 2002 .
[21] Eugenio Oñate,et al. The meshless finite element method , 2003 .
[22] S. L. Sobolev,et al. Theory of Cubature Formulas , 1997 .
[23] Markus H. Gross,et al. A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.
[24] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[25] Steffen Weißer,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes , 2022 .
[26] B. Moran,et al. Stabilized conforming nodal integration in the natural‐element method , 2004 .
[27] Chong-Jun Li,et al. Construction of n-sided polygonal spline element using area coordinates and B-net method , 2010 .
[28] Guirong Liu,et al. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems , 2009 .
[29] P. M. Gullett,et al. On a finite element method with variable element topology , 2000 .
[30] M. Rashid. The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis , 1998 .
[31] D. Owen,et al. Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .
[32] K. Y. Dai,et al. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .
[33] Ulrich Langer,et al. A Non-standard Finite Element Method Based on Boundary Integral Operators , 2011, LSSC.
[34] Dongdong Wang,et al. A Hermite reproducing kernel approximation for thin‐plate analysis with sub‐domain stabilized conforming integration , 2008 .