The partitioned element method in computational solid mechanics

Abstract A finite-element-like approximation method is proposed for solid-mechanics applications, in which the elements can take essentially arbitrary polygonal form. A distinguishing feature of the method, herein called the “partitioned element method,” is a partitioning of the elements into quadrature cells, over which the shape functions are taken to be piecewise linear. The gradient and constant values for each cell are determined by minimizing a quadratic function which represents a combined smoothness and compatibility measure. Linear completeness of the shape-function formulation is proved. Robustness in the presence of element non-convexity and geometric degeneracy (e.g. nearly coincident nodes) are particular goals of the method. Convergence for various 2D linear elasticity problems is demonstrated, and results for a finite-deformation elastic–plastic problem are compared to those of the standard FEM.

[1]  Markus H. Gross,et al.  Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.

[2]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[3]  I. Babuska,et al.  The generalized finite element method , 2001 .

[4]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[5]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[6]  Qinghui Zhang Theoretical analysis of numerical integration in Galerkin meshless methods , 2011 .

[7]  S. Padmanabhan,et al.  Implicit boundary method for finite element analysis using non‐conforming mesh or grid , 2008 .

[8]  N. Sukumar,et al.  Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .

[9]  M. M. Rashid,et al.  A three‐dimensional finite element method with arbitrary polyhedral elements , 2006 .

[10]  Guirong Liu,et al.  Adaptive analysis using the node‐based smoothed finite element method (NS‐FEM) , 2011 .

[11]  Joseph E. Bishop,et al.  Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .

[12]  Elías Cueto,et al.  A comparative study on the performance of meshless approximations and their integration , 2011 .

[13]  Friedrich Stummel,et al.  The Generalized Patch Test , 1979 .

[14]  Jean B. Lasserre,et al.  Integration on a convex polytope , 1998 .

[15]  Zhongci Shi The F-E-M test for convergence of nonconforming finite elements , 1987 .

[16]  Hung Nguyen-Xuan,et al.  An n‐sided polygonal edge‐based smoothed finite element method (nES‐FEM) for solid mechanics , 2010 .

[17]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[18]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[19]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[20]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[21]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[22]  S. L. Sobolev,et al.  Theory of Cubature Formulas , 1997 .

[23]  Markus H. Gross,et al.  A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.

[24]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[25]  Steffen Weißer,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes , 2022 .

[26]  B. Moran,et al.  Stabilized conforming nodal integration in the natural‐element method , 2004 .

[27]  Chong-Jun Li,et al.  Construction of n-sided polygonal spline element using area coordinates and B-net method , 2010 .

[28]  Guirong Liu,et al.  A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems , 2009 .

[29]  P. M. Gullett,et al.  On a finite element method with variable element topology , 2000 .

[30]  M. Rashid The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis , 1998 .

[31]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[32]  K. Y. Dai,et al.  An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .

[33]  Ulrich Langer,et al.  A Non-standard Finite Element Method Based on Boundary Integral Operators , 2011, LSSC.

[34]  Dongdong Wang,et al.  A Hermite reproducing kernel approximation for thin‐plate analysis with sub‐domain stabilized conforming integration , 2008 .