Concept design of a UV light-emitting diode based fluorescence sensor for real-time bioparticle detection

[1]  R. Doi,et al.  The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. , 1971, The Journal of biological chemistry.

[2]  I. B. Berlman Handbook of flourescence spectra of aromatic molecules , 1971 .

[3]  A. Szabo,et al.  Fluorescence decay of tryptophan conformers in aqueous solution , 1980 .

[4]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[5]  Aleksandr Petrovich Demchenko,et al.  Ultraviolet Spectroscopy of Proteins , 1986, 1987.

[6]  C. Harwood,et al.  Molecular biological methods for Bacillus , 1990 .

[7]  D. Gray,et al.  Fluorescence spectroscopy of cellulose, lignin and mechanical pulps : A review , 1997 .

[8]  Yung-sung Cheng,et al.  Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy , 1999 .

[9]  Gary M. Carter,et al.  Low cost phase-modulation measurements of nanosecond fluorescence lifetimes using a lock-in amplifier , 1999 .

[10]  Burt V. Bronk,et al.  Fluorescence Emission Derived from Dipicolinic Acid, its Sodium, and its Calcium Salts , 2000 .

[11]  T. Iwata,et al.  Photon-Counting Phase-Modulation Fluorometer , 2001 .

[12]  Jim Ho,et al.  Future of biological aerosol detection , 2002 .

[13]  Thomas H. Jeys,et al.  Development of a UV-LED-based biosensor , 2003, SPIE Defense + Commercial Sensing.

[14]  M. Mycek,et al.  Handbook of Biomedical Fluorescence , 2003 .

[15]  Yong-Le Pan,et al.  Application of light-emitting diodes for aerosol fluorescence detection. , 2003, Optics letters.

[16]  Michael S. Shur,et al.  AlGaN-based 280nm light-emitting diodes with continuous-wave power exceeding 1mW at 25mA , 2004 .

[17]  Max Shatalov,et al.  AlGaN-based 280nm light-emitting diodes with continuous wave powers in excess of 1.5mW , 2004 .

[18]  Vasanthi Sivaprakasam,et al.  Multiple UV wavelength excitation and fluorescence of bioaerosols , 2004, SPIE Optics East.

[19]  Barbara A. Paldus,et al.  High-sensitivity detectors based on cavity ring-down spectroscopy , 2004, SPIE Security + Defence.

[20]  Bert Davis,et al.  Design considerations and performance characteristics of AirSentinel: a new UV-LIF bio-aerosol threat detection trigger , 2005, SPIE Security + Defence.

[21]  Albertas Žukauskas,et al.  Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores , 2005 .

[22]  Michael S. Shur,et al.  AlGaN Deep-Ultraviolet Light-Emitting Diodes , 2005 .

[23]  R. Walters,et al.  Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection , 2005, IEEE Sensors Journal.

[24]  P. Vitta,et al.  Fluorescence-lifetime identification of biological agents using deep ultraviolet light-emitting diodes , 2005, SPIE Security + Defence.

[25]  Shiv k. Sharma,et al.  Remote Raman and fluorescence studies of mineral samples. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  Lou Reinisch,et al.  Identification of Bacillus Spores Using Clustering of Principal Components of Fluorescence Data , 2005 .

[27]  Steven D. Campbell,et al.  Multiwavelength bioaerosol sensor performance modeling , 2005, SPIE Security + Defence.

[28]  R. Gaska,et al.  Fluorescence detection of biological objects with ultraviolet and visible light-emitting diodes , 2006 .

[29]  P. Vitta,et al.  Optimization of a UV light-emitting diode based fluorescence-phase sensor , 2006, SPIE Security + Defence.

[30]  Lou Reinisch,et al.  Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data. , 2006, Applied optics.

[31]  A. Nurmikko,et al.  Spectroscopic Sorting of Aerosols by a Compact Sensor Employing UV LEDs , 2006 .

[32]  G. Georgiou,et al.  Detection of Anthrax Toxin in the Serum of Animals Infected with Bacillus anthracis by Using Engineered Immunoassays , 2006, Clinical and Vaccine Immunology.

[33]  Alexey S. Ladokhin,et al.  Fluorescence Spectroscopy in Peptide and Protein Analysis , 2006 .

[34]  K. Kopczynski,et al.  Stroboscopic technique for measurement of fluorescence lifetimes of bacteria and biological interferents , 2006, SPIE Security + Defence.

[35]  John C. Carrano,et al.  Low cost LED-based xMAP analyzer for multiplexed diagnosis and environmental detection of biological agents , 2008, Security + Defence.

[36]  Warren Stanley,et al.  Low-cost real-time multiparameter bio-aerosol sensors , 2008, Security + Defence.

[37]  Igor L. Medintz,et al.  Sensors for detecting biological agents , 2008 .

[38]  Krzysztof Kopczynski,et al.  Improved laser-induced fluorescence method for bio-attack early warning detection system , 2008, Security + Defence.

[39]  S. C. Hill,et al.  Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. , 2008, Optics express.

[40]  David Sickenberger,et al.  Overview of the TAC-BIO detector , 2008, Security + Defence.

[41]  Gregory D. Emmerson,et al.  Novel optical sensors for detection of toxins, viruses and bacteria , 2008, Security + Defence.

[42]  E. Bakienė,et al.  Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes , 2008 .

[43]  J. E. Tucker,et al.  Classification and selective collection of individual aerosol particles using laser-induced fluorescence. , 2008, Applied optics.