Sampling hierarchies of discrete random structures

Hierarchical normalized discrete random measures identify a general class of priors that is suited to flexibly learn how the distribution of a response variable changes across groups of observations. A special case widely used in practice is the hierarchical Dirichlet process. Although current theory on hierarchies of nonparametric priors yields all relevant tools for drawing posterior inference, their implementation comes at a high computational cost. We fill this gap by proposing an approximation for a general class of hierarchical processes, which leads to an efficient conditional Gibbs sampling algorithm. The key idea consists of a deterministic truncation of the underlying random probability measures leading to a finite dimensional approximation of the original prior law. We provide both empirical and theoretical support for such a procedure.

[1]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[2]  J. Griffin,et al.  Compound random measures and their use in Bayesian non‐parametrics , 2014, 1410.0611.

[3]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[4]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[5]  Marina Vannucci,et al.  A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data , 2016 .

[6]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[7]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[8]  A. Lijoi,et al.  Models Beyond the Dirichlet Process , 2009 .

[9]  L. Tardella,et al.  Approximating distributions of random functionals of Ferguson‐Dirichlet priors , 1998 .

[10]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[11]  D. Dunson,et al.  Nonparametric Bayes Modeling of Multivariate Categorical Data , 2009, Journal of the American Statistical Association.

[12]  Roberto Casarin,et al.  Hierarchical Species Sampling Models , 2018, 1803.05793.

[13]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[14]  J. Pitman Some developments of the Blackwell-MacQueen urn scheme , 1996 .

[15]  J. Kingman Random Discrete Distributions , 1975 .

[16]  Matteo Ruggiero,et al.  Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process? , 2015, IEEE transactions on pattern analysis and machine intelligence.

[17]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[18]  A. Lijoi,et al.  Distributional results for means of normalized random measures with independent increments , 2003 .

[19]  Michael I. Jordan,et al.  Bayesian Nonparametrics: Hierarchical Bayesian nonparametric models with applications , 2010 .

[20]  Marina Vannucci,et al.  Hierarchical Normalized Completely Random Measures to Cluster Grouped Data , 2020, Journal of the American Statistical Association.

[21]  J. Hagenaars,et al.  Applied Latent Class Analysis , 2003 .

[22]  A. Lijoi,et al.  Bayesian inference with dependent normalized completely random measures , 2014, 1407.0482.

[23]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[24]  Ramsés H. Mena,et al.  Controlling the reinforcement in Bayesian non‐parametric mixture models , 2007 .

[25]  Ramsés H. Mena,et al.  Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors , 2005 .

[26]  Julyan Arbel,et al.  A moment-matching Ferguson & Klass algorithm , 2016, Stat. Comput..

[27]  Raffaele Argiento,et al.  A blocked Gibbs sampler for NGG-mixture models via a priori truncation , 2016, Stat. Comput..

[28]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[29]  Leo A. Goodman,et al.  A New Model for Scaling Response Patterns: An Application of the Quasi-Independence Concept , 1975 .

[30]  Jackson Toby,et al.  Role Conflict and Personality , 1951, American Journal of Sociology.

[31]  Federico Camerlenghi,et al.  Distribution theory for hierarchical processes , 2019, The Annals of Statistics.

[32]  H. Ishwaran,et al.  Exact and approximate sum representations for the Dirichlet process , 2002 .

[33]  Matthew A. Carlton A family of densities derived from the three-parameter Dirichlet process , 2002, Journal of Applied Probability.

[34]  T. Ferguson,et al.  A Representation of Independent Increment Processes without Gaussian Components , 1972 .

[35]  I. Prünster,et al.  On a class of distributions on the simplex , 2011 .

[36]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[37]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[38]  Leo A. Goodman,et al.  On scaling models applied to data from several groups , 1986 .

[39]  Antonio Lijoi,et al.  Dependent mixture models: Clustering and borrowing information , 2014, Comput. Stat. Data Anal..

[40]  A. Lijoi,et al.  Modeling with normalized random measure mixture models , 2013, 1310.0260.

[41]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[42]  Robert J. Connor,et al.  Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution , 1969 .

[43]  I. Pruenster,et al.  Stochastic Approximations to the Pitman–Yor Process , 2018, Bayesian Analysis.

[44]  Michael I. Jordan,et al.  A Sticky HDP-HMM With Application to Speaker Diarization , 2009, 0905.2592.

[45]  A. Lijoi,et al.  A Class of Hazard Rate Mixtures for Combining Survival Data From Different Experiments , 2014 .

[46]  Lancelot F. James,et al.  Conjugacy as a Distinctive Feature of the Dirichlet Process , 2006 .

[47]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[48]  Michele Follen,et al.  Inverse Decision Theory , 2006 .