Multi-Modal Target Tracking Using Heterogeneous Sensor Networks

The paper describes a target tracking system running on a heterogeneous sensor network (HSN) and presents results gathered from a realistic deployment. The system fuses audio direction of arrival data from mote class devices and object detection measurements from embedded PCs equipped with cameras. The acoustic sensor nodes perform beamforming and measure the energy as a function of the angle. The camera nodes detect moving objects and estimate their angle. The sensor detections are sent to a centralized sensor fusion node via a combination of two wireless networks. The novelty of our system is the unique combination of target tracking methods customized for the application at hand and their implementation on an actual HSN platform.

[1]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[2]  Gyula Simon,et al.  The flooding time synchronization protocol , 2004, SenSys '04.

[3]  Sascha Spors,et al.  Joint audio-video object localization and tracking , 2001 .

[4]  Ákos Lédeczi,et al.  Shooter localization and weapon classification with soldier-wearable networked sensors , 2007, MobiSys '07.

[5]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[6]  Volkan Cevher,et al.  Target Tracking Using a Joint Acoustic Video System , 2007, IEEE Transactions on Multimedia.

[7]  David E. Culler,et al.  Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services , 2006, Int. J. Ad Hoc Ubiquitous Comput..

[8]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Andreas Terzis,et al.  Multi-Modal Calibration of Surveillance Sensor Networks , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[10]  EstrinDeborah,et al.  Fine-grained network time synchronization using reference broadcasts , 2002 .

[11]  Deborah Estrin,et al.  Locating tiny sensors in time and space: a case study , 2002, Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[12]  Saurabh Ganeriwal,et al.  Timing-sync protocol for sensor networks , 2003, SenSys '03.

[13]  Suresh Singh,et al.  Exploiting heterogeneity in sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[14]  J. Elson,et al.  Fine-grained network time synchronization using reference broadcasts , 2002, OSDI '02.

[15]  Gyula Simon,et al.  Countersniper system for urban warfare , 2005, TOSN.

[16]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Trevor Darrell,et al.  A Probabilistic Framework for Multi-modal Multi-Person Tracking , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[18]  Stanley T. Birchfield A unifying framework for acoustic localization , 2004, 2004 12th European Signal Processing Conference.

[19]  Deborah Estrin,et al.  Coherent acoustic array processing and localization on wireless sensor networks , 2003, Proc. IEEE.

[20]  Kung Yao,et al.  Acoustic Source Localization and Beamforming: Theory and Practice , 2003, EURASIP J. Adv. Signal Process..

[21]  Rangasami L. Kashyap,et al.  On the robustness of Dempster's rule of combination , 1989, [Proceedings 1989] IEEE International Workshop on Tools for Artificial Intelligence.

[22]  Kay Römer Time synchronization in ad hoc networks , 2001, MobiHoc '01.

[23]  Ákos Lédeczi,et al.  On the Scalability of Routing Integrated Time Synchronization , 2006, EWSN.

[24]  Feng Zhao,et al.  Collaborative In-Network Processing for Target Tracking , 2003, EURASIP J. Adv. Signal Process..