Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity.

Clustered protocadherin (Pcdh) proteins mediate dendritic self-avoidance in neurons via specific homophilic interactions in their extracellular cadherin (EC) domains. We determined crystal structures of EC1-EC3, containing the homophilic specificity-determining region, of two mouse clustered Pcdh isoforms (PcdhγA1 and PcdhγC3) to investigate the nature of the homophilic interaction. Within the crystal lattices, we observe antiparallel interfaces consistent with a role in trans cell-cell contact. Antiparallel dimerization is supported by evolutionary correlations. Two interfaces, located primarily on EC2-EC3, involve distinctive clustered Pcdh structure and sequence motifs, lack predicted glycosylation sites, and contain residues highly conserved in orthologs but not paralogs, pointing toward their biological significance as homophilic interaction interfaces. These two interfaces are similar yet distinct, reflecting a possible difference in interaction architecture between clustered Pcdh subfamilies. These structures initiate a molecular understanding of clustered Pcdh assemblies that are required to produce functional neuronal networks.

[1]  R. Lavery,et al.  Cadherin mechanics and complexation: the importance of calcium binding. , 2005, Biophysical journal.

[2]  Mitsuhiko Ikura,et al.  Structural basis of calcium-induced E-cadherin rigidification and dimerization , 1996 .

[3]  E. Bennett,et al.  Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins , 2013, Proceedings of the National Academy of Sciences.

[4]  J. Janin,et al.  Dissecting protein–protein recognition sites , 2002, Proteins.

[5]  J. Beaulieu,et al.  Molecular Neuroscience Review Article Gsk-3 and Wnt Signaling in Neurogenesis and Bipolar Disorder , 2022 .

[6]  Shigeyuki Esumi,et al.  Monoallelic yet combinatorial expression of variable exons of the protocadherin-α gene cluster in single neurons , 2005, Nature Genetics.

[7]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[8]  Thomas A. Hopf,et al.  Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing , 2012, Cell.

[9]  Hongbo Zhu,et al.  NOXclass: prediction of protein-protein interaction types , 2006, BMC Bioinformatics.

[10]  J. Weiner,et al.  Protocadherins, not prototypical: a complex tale of their interactions, expression, and functions , 2013, Front. Mol. Neurosci..

[11]  J. Weiner,et al.  Center for Molecular Medicine, , 2011 .

[12]  J. Sanes,et al.  Chemoaffinity Revisited: Dscams, Protocadherins, and Neural Circuit Assembly , 2010, Cell.

[13]  Thomas A. Hopf,et al.  Sequence co-evolution gives 3D contacts and structures of protein complexes , 2014, eLife.

[14]  K. Schulten,et al.  The allosteric role of the Ca2+ switch in adhesion and elasticity of C-cadherin. , 2008, Biophysical journal.

[15]  D. Schmucker,et al.  Structural basis of Dscam isoform specificity , 2006, Nature.

[16]  S. Jones,et al.  Principles of protein-protein interactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  T. Maniatis,et al.  Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret , 2010, Proceedings of the National Academy of Sciences.

[18]  S. Brunak,et al.  Precision mapping of the human O‐GalNAc glycoproteome through SimpleCell technology , 2013, The EMBO journal.

[19]  N. Blom,et al.  Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence , 2004, Proteomics.

[20]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[21]  M. Lawrence,et al.  Shape complementarity at protein/protein interfaces. , 1993, Journal of molecular biology.

[22]  Semie Kang,et al.  Gamma-protocadherin homophilic interaction and intracellular trafficking is controlled by the cytoplasmic domain in neurons , 2009, Molecular and Cellular Neuroscience.

[23]  J. Thornton,et al.  Discriminating between homodimeric and monomeric proteins in the crystalline state , 2000, Proteins.

[24]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[25]  Sivaraman Balakrishnan,et al.  Learning generative models for protein fold families , 2011, Proteins.

[26]  E. Aurell,et al.  Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  D. Corey,et al.  Sorting out a promiscuous superfamily: towards cadherin connectomics. , 2014, Trends in cell biology.

[28]  Peter B. McGarvey,et al.  UniRef: comprehensive and non-redundant UniProt reference clusters , 2007, Bioinform..

[29]  J. Sanes,et al.  γ-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina , 2008, Development.

[30]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[31]  Francis Rodier,et al.  Protein–protein interaction at crystal contacts , 1995, Proteins.

[32]  B. Honig,et al.  Thinking outside the cell: how cadherins drive adhesion. , 2012, Trends in cell biology.

[33]  D. Corey,et al.  Structural Determinants of Cadherin-23 Function in Hearing and Deafness , 2010, Neuron.

[34]  Xiaozhong Wang,et al.  Gamma-protocadherins regulate the functional integrity of hypothalamic feeding circuitry in mice. , 2010, Developmental biology.

[35]  J. Weiner,et al.  Control of CNS Synapse Development by γ-Protocadherin-Mediated Astrocyte–Neuron Contact , 2009, The Journal of Neuroscience.

[36]  D. Corey,et al.  Structure of a Force-Conveying Cadherin Bond Essential for Inner-Ear Mechanotransduction , 2012, Nature.

[37]  D. Baker,et al.  Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era , 2013, Proceedings of the National Academy of Sciences.

[38]  D. Schreiner,et al.  γ-Protocadherins Control Cortical Dendrite Arborization by Regulating the Activity of a FAK/PKC/MARCKS Signaling Pathway , 2012, Neuron.

[39]  D. Sibley,et al.  Phorbol-Ester Mediated Suppression of hASH1 Synthesis: Multiple Ways to Keep the Level Down , 2011, Front. Mol. Neurosci..

[40]  T. Ensslin,et al.  Reconstruction of Gaussian and log-normal fields with spectral smoothness , 2012, 1210.6866.

[41]  E. Aurell,et al.  Inverse Ising inference using all the data. , 2011, Physical review letters.

[42]  D. Baker,et al.  Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information , 2014, eLife.

[43]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[44]  Sean R. Eddy,et al.  Hidden Markov model speed heuristic and iterative HMM search procedure , 2010, BMC Bioinformatics.

[45]  J. Tapia,et al.  Single-Cell Identity Generated by Combinatorial Homophilic Interactions between α, β, and γ Protocadherins , 2014, Cell.

[46]  J. Jontes,et al.  Inhibition of protocadherin-alpha function results in neuronal death in the developing zebrafish. , 2008, Developmental biology.

[47]  R. Kaneko,et al.  Identification of the Cluster Control Region for the Protocadherin-β Genes Located beyond the Protocadherin-γ Cluster* , 2011, The Journal of Biological Chemistry.

[48]  T. Maniatis,et al.  Molecular and Functional Interaction between Protocadherin-γC5 and GABAA Receptors , 2012, The Journal of Neuroscience.

[49]  Xiaozhong Wang,et al.  Proteomics Analysis Reveals Overlapping Functions of Clustered Protocadherins* , 2009, Molecular & Cellular Proteomics.

[50]  R. Kaneko,et al.  Allelic Gene Regulation of Pcdh-α and Pcdh-γ Clusters Involving Both Monoallelic and Biallelic Expression in Single Purkinje Cells* , 2006, Journal of Biological Chemistry.

[51]  T. Boggon,et al.  C-Cadherin Ectodomain Structure and Implications for Cell Adhesion Mechanisms , 2002, Science.

[52]  Bosiljka Tasic,et al.  Functional Significance of Isoform Diversification in the Protocadherin Gamma Gene Cluster , 2012, Neuron.

[53]  J. Janin,et al.  A dissection of specific and non-specific protein-protein interfaces. , 2004, Journal of molecular biology.

[54]  J. Weiner,et al.  A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-γ gene cluster , 2008, Development.

[55]  Hidekazu Tanaka,et al.  γ-Protocadherins Are Targeted to Subsets of Synapses and Intracellular Organelles in Neurons , 2003, The Journal of Neuroscience.

[56]  J. Sanes,et al.  Kostadinov and Sanes 1 Protocadherin-dependent Dendritic Self-avoidance Regulates Neural 1 Connectivity and Circuit Function 2 3 , 2015 .

[57]  T. Yagi,et al.  Structure of the Cadherin-related Neuronal Receptor/Protocadherin-α First Extracellular Cadherin Domain Reveals Diversity across Cadherin Families* , 2006, Journal of Biological Chemistry.

[58]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[59]  J. Sanes,et al.  Gamma Protocadherins Are Required for Survival of Spinal Interneurons , 2002, Neuron.

[60]  C. Sander,et al.  Direct-coupling analysis of residue coevolution captures native contacts across many protein families , 2011, Proceedings of the National Academy of Sciences.

[61]  T. Yagi Molecular codes for neuronal individuality and cell assembly in the brain , 2012, Front. Mol. Neurosci..

[62]  Tom Maniatis,et al.  PROTOCADHERINS MEDIATE DENDRITIC SELF-AVOIDANCE IN THE MAMMALIAN NERVOUS SYSTEM , 2012, Nature.

[63]  B. Honig,et al.  The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. , 2011, Structure.

[64]  J. Jontes,et al.  The clustered protocadherins Pcdhα and Pcdhγ form a heteromeric complex in zebrafish , 2012, Neuroscience.

[65]  J. Sanes,et al.  Gamma protocadherins are required for synaptic development in the spinal cord. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[67]  D. Baker,et al.  A Double S Shape Provides the Structural Basis for the Extraordinary Binding Specificity of Dscam Isoforms , 2008, Cell.

[68]  D. Schreiner,et al.  Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion , 2010, Proceedings of the National Academy of Sciences.