On the Stability of the Dual Problem for High Reynolds Number Flow Past a Circular Cylinder in Two Dimensions

In this paper we present a computational study of the stability of time dependent dual problems for compressible flow at high Reynolds numbers in two dimensions. The dual problem measures the sensitivity of an output functional with respect to numerical errors and is a key part of goal oriented a posteriori error estimation. Our investigation shows that the dual problem associated with the computation of the drag force for the compressible Euler/Navier--Stokes equations, which are approximated numerically using different temporal discretization and stabilization techniques, is unstable and exhibits blow-up for several Mach regimes considered in this paper.

[1]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[2]  Johan Hoffman,et al.  An adaptive finite element method for inviscid compressible flow , 2010 .

[3]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[4]  Roland Becker A posteriori error estimation in Finite Element methods , 2010 .

[5]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[6]  J. Hoffman ON DUALITY BASED A POSTERIORI ERROR ESTIMATION IN VARIOUS NORMS AND LINEAR FUNCTIONALS FOR LES , 2004 .

[7]  Erik Burman,et al.  Adaptive finite element methods for compressible flow , 2000 .

[8]  M. Zdravkovich Flow around circular cylinders , 2016 .

[9]  Johan Hoffman,et al.  Residual‐based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods , 2013 .

[10]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[11]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[12]  Johan Hoffman,et al.  Efficient computation of mean drag for the subcritical flow past a circular cylinder using general Galerkin G2 , 2009 .

[13]  Ralf Hartmann,et al.  Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows , 2010 .

[14]  Johan Hoffman,et al.  Computation of Mean Drag for Bluff Body Problems Using Adaptive DNS/LES , 2005, SIAM J. Sci. Comput..

[15]  C Thompson,et al.  Applied CFD techniques: An introduction based on finite element methods , 2002 .

[16]  Endre Süli,et al.  Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .

[17]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[18]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[19]  Johan Hoffman,et al.  A new approach to computational turbulence modeling , 2006 .

[20]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[21]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[22]  Johan Hoffman,et al.  Resolution of d’Alembert’s Paradox , 2010 .

[23]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[24]  Timothy J. Barth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .

[25]  Timothy J. Barth,et al.  Space-Time Error Representation and Estimation in Navier-Stokes Calculations , 2013 .

[26]  Niclas Jansson,et al.  Adaptive simulation of turbulent flow past a full car model , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[27]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .