Fortified-Descent Simplicial Search Method: A General Approach

We propose a new simplex-based direct search method for unconstrained minimization of a real-valued function f of n variables. As in other methods of this kind, the intent is to iteratively improve an n-dimensional simplex through certain reflection/expansion/contraction steps. The method has three novel features. First, a user-chosen integer $\bar m_k$ specifies the number of "good" vertices to be retained in constructing the initial trial simplices---reflected, then either expanded or contracted---at iteration k. Second, a trial simplex is accepted only when it satisfies the criteria of fortified descent, which are stronger than the criterion of strict descent used in most direct search methods. Third, the number of additional function evaluations needed to check a trial reflected/expanded simplex for fortified descent can be controlled. If one of the initial trial simplices satisfies the fortified-descent criteria, it is accepted as the new simplex; otherwise, the simplex is shrunk a fraction of the way toward a best vertex and the process is restarted, etc., until either a trial simplex is accepted or the simplex effectively has shrunk to a single point. We prove several theoretical properties of the new method. If f is continuously differentiable, bounded below, and uniformly continuous on its lower level set and we choose $\bar m_k$ with the same value at all iterations k, then every cluster point of the generated sequence of iterates is a stationary point. The same conclusion holds if the function is continuously differentiable, bounded below, and we choose $\bar m_k=1$ at all iterations k.

[1]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[2]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[3]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[4]  M. J. D. Powell,et al.  An Iterative Method for Finding Stationary Values of a Function of Several Variables , 1962, Comput. J..

[5]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[6]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[7]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[8]  R. Fletcher,et al.  Function Minimization Without Evaluating Derivatives - a Review , 1965, Comput. J..

[9]  M. J. Box A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..

[10]  Willard I. Zangwill,et al.  Minimizing a function without calculating derivatives , 1967, Comput. J..

[11]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[12]  J. Cea Optimisation : théorie et algorithmes , 1971 .

[13]  俞文此 POSITIVE BASIS AND A CLASS OF DIRECT SEARCH TECHNIQUES , 1979 .

[14]  Daniel John Woods,et al.  An interactive approach for solving multi-objective optimization problems (interactive computer, nelder-mead simplex algorithm, graphics) , 1985 .

[15]  Daniel J. Woods,et al.  Optimization on Microcomputers: The Nelder-Mead Simplex Algorithm , 1985 .

[16]  V. J. Torczoit,et al.  Multidirectional search: a direct search algorithm for parallel machines , 1989 .

[17]  John E. Dennis,et al.  Multidirectional search: a direct search algorithm for parallel machines , 1989 .

[18]  John E. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991, SIAM J. Optim..

[19]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[20]  J. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991 .

[21]  Virginia Torczon,et al.  On the Convergence of the Multidirectional Search Algorithm , 1991, SIAM J. Optim..

[22]  Peter Gritzmann,et al.  On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[23]  Margaret H. Wright,et al.  Direct search methods: Once scorned, now respectable , 1996 .

[24]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[25]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[26]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..