Large‐eddy simulations over Germany using ICON: a comprehensive evaluation

Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.

Hartwig Deneke | Volker Wulfmeyer | Günther Zängl | Norbert Kalthoff | Clemens Simmer | Hans-Christian Hege | Kathrin Wapler | Susanne Crewell | Andreas Behrendt | Johannes Quaas | Moritz Hanke | L. Scheck | Holger Baars | Silke Trömel | Emiliano Orlandi | Felix Ament | Bernhard Mayer | Niklas Röber | Axel Seifert | Alexander Kuhn | Corinna Hoose | Fabian Senf | Christopher Moseley | Daniel Klocke | Bjorn Stevens | Matthias Brueck | A. Dipankar | Ulrich Blahak | Michael Weniger | Petra Friederichs | Patric Seifert | Andreas Macke | Stefan Kneifel | Sandra Steinke | Xinxin Xie | Akio Hansen | Rieke Heinze | Cintia Carbajal Henken | Catrin I. Meyer | Panos Adamidis | Florian Pantillon | Bernhard Pospichal | Raquel Evaristo | Paolo Di Girolamo | Sebastian Bley | Peter Knippertz | Jürgen Fischer | B. Stevens | H. Hege | B. Mayer | U. Blahak | P. Friederichs | P. Seifert | S. Kneifel | D. Klocke | H. Deneke | P. Di Girolamo | C. Simmer | F. Ament | S. Crewell | Akio Hansen | M. Brueck | G. Zängl | H. Baars | S. Bley | J. Fischer | P. Knippertz | A. Macke | C. Moseley | C. Hoose | J. Quaas | A. Seifert | C. Meyer | A. Dipankar | V. Wulfmeyer | N. Kalthoff | F. Pantillon | K. Wapler | O. Sourdeval | Rieke Heinze | C. C. Henken | N. Röber | L. Scheck | F. Senf | R. Neggers | A. Kuhn | B. Pospichal | A. Behrendt | T. Jahns | S. Trömel | C. Barthlott | M. Weniger | S. Steinke | Christopher Frank | Shravan Kumar Muppa | Vera Maurer | Odran Sourdeval | Christian Barthlott | E. Orlandi | S. Brdar | Christopher Frank | Xinxin Xie | Raquel Evaristo | Slavko Brdar | Tobias Göcke | Ksenia Gorges | L. B. Hande | Thomas Jahns | Thriza van Laar | Roeland A. J. Neggers | Pavan Kumar Siligam | Dan Zhang | V. Maurer | S. K. Muppa | M. Hanke | P. Adamidis | Dan Zhang | L. Hande | Ksenia Gorges | P. K. Siligam | Tobias Göcke | Thriza van Laar | Slavko Brdar

[1]  Ralf Wolke,et al.  Influence of grid resolution and meteorological forcing on simulated European air quality: A sensitivity study with the modeling system COSMO–MUSCAT , 2012 .

[2]  Almut Gassmann,et al.  Towards a consistent numerical compressible non‐hydrostatic model using generalized Hamiltonian tools , 2008 .

[3]  Pengfei Zhang,et al.  Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data , 2016 .

[4]  J. Quaas Evaluating the “critical relative humidity” as a measure of subgrid‐scale variability of humidity in general circulation model cloud cover parameterizations using satellite data , 2012 .

[5]  Johannes Hendricks,et al.  Physically based parameterization of cirrus cloud formation for use in global atmospheric models , 2006 .

[6]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[7]  D. Lenschow,et al.  How long is long enough when measuring fluxes and other turbulence statistics , 1994 .

[8]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[9]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[10]  F. J. Narcowich,et al.  Generalized Hermite interpolation via matrix-valued conditionally positive definite functions , 1994 .

[11]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[12]  Robin J. Hogan,et al.  Deriving cloud overlap statistics from radar , 2000 .

[13]  Clemens Simmer,et al.  JOYCE: Jülich Observatory for cloud evolution , 2015 .

[14]  Volker Wulfmeyer,et al.  A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles , 2015 .

[15]  Axel Seifert,et al.  On the Parameterization of Evaporation of Raindrops as Simulated by a One-Dimensional Rainshaft Model , 2008 .

[16]  Volker Wulfmeyer,et al.  3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar , 2016 .

[17]  R. Hogan,et al.  THE DYMECS PROJECT A Statistical Approach for the Evaluation of Convective Storms in High-Resolution NWP Models , 2015 .

[18]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[19]  Jimy Dudhia,et al.  An Upper Gravity-Wave Absorbing Layer for NWP Applications , 2008 .

[20]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[21]  L. Sauvage,et al.  Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe , 2012, Boundary-Layer Meteorology.

[22]  C. Hoose,et al.  Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the "gray zone" , 2015 .

[23]  V. Wulfmeyer,et al.  Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements , 2016 .

[24]  Manuel L. Campagnolo,et al.  Estimation of Effective Resolution for Daily MODIS Gridded Surface Reflectance Products , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Hartwig Deneke,et al.  Uncertainties in synthetic Meteosat SEVIRI infrared brightness temperatures in the presence of cirrus clouds and implications for evaluation of cloud microphysics , 2017 .

[26]  Albert Ansmann,et al.  Continuous monitoring of the boundary-layer top with lidar , 2008 .

[27]  Ali Mahdavi-Amiri,et al.  Multiresolution visualization of digital earth data via hexagonal box-spline wavelets , 2015, 2015 IEEE Scientific Visualization Conference (SciVis).

[28]  Gerhard Smiatek,et al.  Impact of land use and soil data specifications on COSMO-CLM simulations in the CORDEX-MED area , 2016 .

[29]  D. Stephenson,et al.  A new intensity‐scale approach for the verification of spatial precipitation forecasts , 2004 .

[30]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[31]  P. Bechtold,et al.  Understanding and representing atmospheric convection across scales: recommendations from the meeting held at Dartington Hall, Devon, UK, 28–30 January 2013 , 2014 .

[32]  Siegfried Raasch,et al.  The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives , 2015 .

[33]  Volker Wulfmeyer,et al.  Measuring Second- through Fourth-Order Moments in Noisy Data , 2000 .

[34]  S. Crewell,et al.  How microphysical choices affect simulated infrared brightness temperatures , 2015 .

[35]  Roel Neggers,et al.  Size Statistics of Cumulus Cloud Populations in Large-Eddy Simulations , 2003 .

[36]  L. Scheck,et al.  A fast radiative transfer method for the simulation of visible satellite imagery , 2016 .

[37]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[38]  Gerhard Peters,et al.  A 35-GHz Polarimetric Doppler Radar for Long-Term Observations of Cloud Parameters—Description of System and Data Processing , 2015 .

[39]  V. Wulfmeyer,et al.  Determination of Convective Boundary Layer Entrainment Fluxes, Dissipation Rates, and the Molecular Destruction of Variances: Theoretical Description and a Strategy for Its Confirmation with a Novel Lidar System Synergy , 2016 .

[40]  Robin J. Hogan,et al.  Equation for the Microwave Backscatter Cross Section of Aggregate Snowflakes Using the Self-Similar Rayleigh–Gans Approximation , 2014 .

[41]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[42]  J. F. Meirink,et al.  Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloud‐phase retrievals , 2010 .

[43]  P. Friederichs,et al.  Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMO-DE , 2012 .

[44]  Donald H. Lenschow,et al.  Mean-Field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer , 1980 .

[45]  G. Mellor,et al.  A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .

[46]  A. Pier Siebesma,et al.  Overlap statistics of cumuliform boundary-layer cloud fields in large-eddy simulations , 2011 .

[47]  Richard C. J. Somerville,et al.  SCM Simulations of Tropical Ice Clouds Using Observationally Based Parameterizations of Microphysics , 2003 .

[48]  Albert Ansmann,et al.  The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation , 2016 .

[49]  Susanne Crewell,et al.  Towards a high‐resolution regional reanalysis for the European CORDEX domain , 2015 .

[50]  R. Hogan,et al.  The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model , 2006 .

[51]  Rene Preusker,et al.  Retrieval of daytime total columnar water vapour from MODIS measurements over land surfaces , 2014 .

[52]  A. Wieser,et al.  Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain , 2015 .

[53]  A. Holtslag,et al.  Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number , 2013, Boundary-Layer Meteorology.

[54]  Albert Ansmann,et al.  LACROS: the Leipzig Aerosol and Cloud Remote Observations System , 2013, Remote Sensing.

[55]  Oliver Fuhrer,et al.  A Generalization of the SLEVE Vertical Coordinate , 2010 .

[56]  Clemens Simmer,et al.  A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere , 2005 .

[57]  Pavlos Kollias,et al.  Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications , 2011 .

[58]  Thijs Heus,et al.  Automated tracking of shallow cumulus clouds in large domain, long duration Large Eddy Simulations , 2013 .

[59]  B. Casati,et al.  New Developments of the Intensity-Scale Technique within the Spatial Verification Methods Intercomparison Project , 2010 .

[60]  U. Lohmann,et al.  A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols , 2002 .

[61]  M. Matricardi,et al.  An improved fast radiative transfer model for assimilation of satellite radiance observations , 1999 .

[62]  Joao Teixeira,et al.  Probability Density Functions of Liquid Water Path and Total Water Content of Marine Boundary Layer Clouds: Implications for Cloud Parameterization , 2012 .

[63]  M. Webb,et al.  Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing , 2008 .

[64]  Günther Zängl,et al.  Large eddy simulation using the general circulation model ICON , 2015 .

[65]  B. Casati,et al.  A New Spatial-Scale Decomposition of the Brier Score: Application to the Verification of Lightning Probability Forecasts , 2007 .

[66]  P. Mininni,et al.  Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation , 2007 .

[67]  R. Hogan,et al.  Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds , 2010 .

[68]  P. Di Girolamo,et al.  Assessment of small-scale integrated water vapour variability during HOPE , 2014 .

[69]  Volker Wulfmeyer,et al.  Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar , 2014 .

[70]  Yuefei Zeng,et al.  Efficient Radar Forward Operator for Operational Data Assimilation within the COSMO-model , 2013 .

[71]  I. Eckley,et al.  Locally stationary wavelet fields with application to the modelling and analysis of image texture , 2010 .

[72]  Ralf Wolke,et al.  The Parallel Model System LM-MUSCAT for Chemistry-Transport Simulations: Coupling Scheme, Parallelization and Applications , 2003, PARCO.

[73]  Steven J. Woolnough,et al.  Precipitation distributions for explicit versus parametrized convection in a large‐domain high‐resolution tropical case study , 2012 .

[74]  D. Randall,et al.  Large‐Eddy Simulation of Maritime Deep Tropical Convection , 2009 .

[75]  M. Mishchenko,et al.  Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. , 2000, Applied optics.

[76]  Barnaby S. Love,et al.  The diurnal cycle of precipitation over the Maritime Continent in a high‐resolution atmospheric model , 2011 .

[77]  I. Tegen,et al.  Parameterizing cloud condensation nuclei concentrations during HOPE , 2016 .

[78]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[79]  W. Paul Menzel,et al.  Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances , 2003, SPIE Asia-Pacific Remote Sensing.

[80]  G. Mace,et al.  Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS Campaign , 2013 .

[81]  Gerhard Smiatek,et al.  Time invariant data preprocessor for the climate version of the COSMO model (COSMO-CLM) , 2008 .

[82]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description , 2006 .

[83]  Oleg A. Krasnov,et al.  Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations , 2007 .

[84]  TOWARDS A BETTER REPRESENTATION OF HIGH DENSITY ICE PARTICLES IN A STATE-OFTHE-ART TWO-MOMENT BULK MICROPHYSICAL SCHEME , 2008 .

[85]  Arnold Tafferner,et al.  Synthetic Satellite Imagery in the Lokal-Modell , 2006 .

[86]  J. T. Dawe,et al.  Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm , 2011 .

[87]  Bernhard Mayer,et al.  Observation Operator for Visible and Near-Infrared Satellite Reflectances , 2014 .

[88]  J. Deardorff Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection , 1970 .

[89]  J. Pinto,et al.  Statistical Assessment of Tropical Convection-Permitting Model Simulations Using a Cell-Tracking Algorithm , 2013 .

[90]  R. Hogan,et al.  Mixing‐length controls on high‐resolution simulations of convective storms , 2013 .

[91]  C. Hohenegger,et al.  The Formation of Wider and Deeper Clouds as a Result of Cold-Pool Dynamics , 2014 .

[92]  H. Miura An Upwind-Biased Conservative Advection Scheme for Spherical Hexagonal–Pentagonal Grids , 2007 .

[93]  M. King,et al.  Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .

[94]  E. Lorenz Energy and Numerical Weather Prediction , 1960 .

[95]  C. Schär,et al.  Towards climate simulations at cloud-resolving scales , 2008 .

[96]  Volker Wulfmeyer,et al.  Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP) 2 Observational Prototype Experiment , 2014 .

[97]  Günther Zängl,et al.  The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version , 2013 .

[98]  K. D. Beheng,et al.  Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme , 2010 .

[99]  Michael J. Oimoen,et al.  ASTER Global Digital Elevation Model Version 2 - summary of validation results , 2011 .

[100]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[101]  Jacques Pelon,et al.  STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data , 2007 .

[102]  Galina Dick,et al.  The general observation period 2007 within the priority program on quantitative precipitation forecasting: concept and first results , 2008 .

[103]  Peter Clark,et al.  Convection‐permitting models: a step‐change in rainfall forecasting , 2016 .

[104]  G. Zängl,et al.  The ICON (ICOsahedral Non‐hydrostatic) modelling framework of DWD and MPI‐M: Description of the non‐hydrostatic dynamical core , 2015 .

[105]  Hartwig Deneke,et al.  The HD(CP)2 Observational Prototype Experiment (HOPE) - An overview , 2016 .

[106]  J. Mülmenstädt,et al.  Analysis of diagnostic climate model cloud parametrizations using large‐eddy simulations , 2015 .

[107]  A. P. Siebesma,et al.  Weather Forecasting Using GPU-Based Large-Eddy Simulations , 2015 .

[108]  Bianca Adler,et al.  KITcube - a mobile observation platform for convection studies deployed during HyMeX , 2013 .

[109]  D. Lilly On the numerical simulation of buoyant convection , 1962 .

[110]  Rob Roebeling,et al.  Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT‐8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA‐17 , 2006 .

[111]  Michael Weniger,et al.  Spatial verification using wavelet transforms: a review , 2016, 1605.03395.

[112]  B. L. Madhavan,et al.  Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields , 2015 .

[113]  Dorit Jerger,et al.  Radar Forward Operator for Verification of Cloud Resolving Simulations within the COSMO Model , 2014 .

[114]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[115]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[116]  S. Bony,et al.  On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates , 2013, Climate Dynamics.

[117]  Steven Platnick,et al.  Impact of three‐dimensional radiative effects on satellite retrievals of cloud droplet sizes , 2006 .

[118]  Bicheron Patrice,et al.  GlobCover - Products Description and Validation Report , 2008 .

[119]  R. Leung,et al.  A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges , 2015, Reviews of geophysics.

[120]  C. Frei,et al.  SAL—A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts , 2008 .

[121]  Susanne Crewell,et al.  Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment , 2014 .

[122]  Ulrich Blahak,et al.  An efficient modular volume‐scanning radar forward operator for NWP models: description and coupling to the COSMO model , 2016 .

[123]  Siegfried Raasch,et al.  Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign , 2016 .

[124]  S. Crewell,et al.  Long-term evaluation of COSMO forecasting using combined observational data of the GOP period , 2011 .

[125]  Olivier Boucher,et al.  Adjustments in the Forcing-Feedback Framework for Understanding Climate Change , 2014 .

[126]  Judith A. Curry,et al.  Characteristics of small tropical cumulus clouds and their impact on the environment , 1998 .

[127]  John B. Bell,et al.  Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames , 2010, IEEE Transactions on Visualization and Computer Graphics.

[128]  I. Tegen,et al.  Seasonal variability of Saharan desert dust and ice nucleating particles over Europe , 2014 .

[129]  M. Baldauf,et al.  Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities , 2011 .

[130]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[131]  Amy Henderson,et al.  The ParaView Guide: A Parallel Visualization Application , 2004 .

[132]  D. Summa,et al.  Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event , 2009 .

[133]  Volker Wulfmeyer,et al.  Turbulent Humidity Fluctuations in the Convective Boundary Layer: Case Studies Using Water Vapour Differential Absorption Lidar Measurements , 2015, Boundary-Layer Meteorology.

[134]  D. Lilly,et al.  On the numerical simulation of buoyant convection , 1962 .

[135]  Galina Dick,et al.  Near Real Time GPS Water Vapor Monitoring for Numerical Weather Prediction in Germany , 2004 .

[136]  A. Ryzhkov,et al.  Investigations of Backscatter Differential Phase in the Melting Layer , 2014 .

[137]  Alexander Smirnov,et al.  Columnar water vapor retrievals from multifilter rotating shadowband radiometer data , 2009 .

[138]  Pavlos Kollias,et al.  Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments Using in situ Aircraft Observations , 2015 .

[139]  A. P. Siebesma,et al.  Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications , 2010 .

[140]  Thijs Heus,et al.  CONTINUOUS SINGLE-COLUMN MODEL EVALUATION AT A PERMANENT METEOROLOGICAL SUPERSITE , 2012 .

[141]  A. Ryzhkov,et al.  Use of Specific Attenuation for Rainfall Measurement at X-Band Radar Wavelengths. Part I: Radar Calibration and Partial Beam Blockage Estimation , 2015 .

[142]  M. Baldauf,et al.  3D diffusion in terrain‐following coordinates: testing and stability of horizontally explicit, vertically implicit discretizations , 2016 .