Properties of cell death models calibrated and compared using Bayesian approaches

Using models to simulate and analyze biological networks requires principled approaches to parameter estimation and model discrimination. We use Bayesian and Monte Carlo methods to recover the full probability distributions of free parameters (initial protein concentrations and rate constants) for mass‐action models of receptor‐mediated cell death. The width of the individual parameter distributions is largely determined by non‐identifiability but covariation among parameters, even those that are poorly determined, encodes essential information. Knowledge of joint parameter distributions makes it possible to compute the uncertainty of model‐based predictions whereas ignoring it (e.g., by treating parameters as a simple list of values and variances) yields nonsensical predictions. Computing the Bayes factor from joint distributions yields the odds ratio (∼20‐fold) for competing ‘direct’ and ‘indirect’ apoptosis models having different numbers of parameters. Our results illustrate how Bayesian approaches to model calibration and discrimination combined with single‐cell data represent a generally useful and rigorous approach to discriminate between competing hypotheses in the face of parametric and topological uncertainty.

[1]  H. Akaike A new look at the statistical model identification , 1974 .

[2]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[3]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[4]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[5]  William H. Press,et al.  Numerical Recipes in C The Art of Scientific Computing , 1995 .

[6]  C. Brooks Computer simulation of liquids , 1989 .

[7]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[8]  Qiang Zheng,et al.  Comparison of deterministic and stochastic kinetics for nonlinear systems , 1991 .

[9]  H. Erickson,et al.  Kinetics of protein-protein association explained by Brownian dynamics computer simulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[11]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[12]  Adrian E. Raftery,et al.  Bayes factors and model uncertainty , 1995 .

[13]  Benjamin S. White,et al.  Bayesian estimation applied to effective heat transfer coefficients in a packed bed , 1995 .

[14]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[15]  G M Cohen,et al.  Caspases: the executioners of apoptosis. , 1997, The Biochemical journal.

[16]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[17]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[18]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[19]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[20]  A H Briggs,et al.  A Bayesian approach to stochastic cost-effectiveness analysis. , 1999, Health economics.

[21]  B. Kholodenko,et al.  Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor* , 1999, The Journal of Biological Chemistry.

[22]  W. Earnshaw,et al.  Induction of apoptosis by cancer chemotherapy. , 2000, Experimental cell research.

[23]  M. Fussenegger,et al.  A mathematical model of caspase function in apoptosis , 2000, Nature Biotechnology.

[24]  M. Fussenegger,et al.  Streptogramin-based gene regulation systems for mammalian cells , 2000, Nature Biotechnology.

[25]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[26]  J. Arnold,et al.  An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Schuster,et al.  Modelling of simple and complex calcium oscillations , 2002 .

[28]  K R Godfrey,et al.  The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows with postmilking teat disinfection. , 2002, Mathematical biosciences.

[29]  S. Schuster,et al.  Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. , 2002, European journal of biochemistry.

[30]  David G Spiller,et al.  Multi-parameter analysis of the kinetics of NF-kappaB signalling and transcription in single living cells. , 2002, Journal of cell science.

[31]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[32]  Markus Rehm,et al.  Real-time single cell analysis of Smac/DIABLO release during apoptosis , 2003, The Journal of cell biology.

[33]  K. S. Brown,et al.  Statistical mechanical approaches to models with many poorly known parameters. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[35]  K. H. Lee,et al.  The statistical mechanics of complex signaling networks: nerve growth factor signaling , 2004, Physical biology.

[36]  K. S. Brown,et al.  Bayesian ensemble approach to error estimation of interatomic potentials. , 2004, Physical review letters.

[37]  Nicholas T Ingolia,et al.  Topology and Robustness in the Drosophila Segment Polarity Network , 2004, PLoS biology.

[38]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[39]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[40]  Jery R. Stedinger,et al.  Bayesian MCMC flood frequency analysis with historical information , 2005 .

[41]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[42]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[43]  C. L. Stokes,et al.  Effects of Bcl-2 levels on Fas signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions , 2005, The Journal of Immunology.

[44]  Michael Andrew Christie,et al.  Error analysis and simulations of complex phenomena , 2005 .

[45]  G B Ermentrout,et al.  Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. , 2006, Biophysical journal.

[46]  H. Philippe,et al.  Computing Bayes factors using thermodynamic integration. , 2006, Systematic biology.

[47]  James W. Taylor,et al.  Global dynamic optimization for parameter estimation in chemical kinetics. , 2006, The journal of physical chemistry. A.

[48]  Jochen H M Prehn,et al.  Systems analysis of effector caspase activation and its control by X‐linked inhibitor of apoptosis protein , 2006, The EMBO journal.

[49]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[50]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[51]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[52]  Gaudenz Danuser,et al.  Linking data to models: data regression , 2006, Nature Reviews Molecular Cell Biology.

[53]  Wei Zhang,et al.  Robustness analysis identifies the plausible model of the Bcl‐2 apoptotic switch , 2007, FEBS letters.

[54]  Rui Wang,et al.  Modeling of the role of a Bax-activation switch in the mitochondrial apoptosis decision. , 2007, Biophysical journal.

[55]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[56]  Vincent Danos,et al.  Rule-Based Modelling of Cellular Signalling , 2007, CONCUR.

[57]  A. Pettitt,et al.  Marginal likelihood estimation via power posteriors , 2008 .

[58]  Mark A. Girolami,et al.  BioBayes: A software package for Bayesian inference in systems biology , 2008, Bioinform..

[59]  Michael I. Jordan,et al.  A Dual Receptor Crosstalk Model of G-Protein-Coupled Signal Transduction , 2008, PLoS Comput. Biol..

[60]  Bryan C. Daniels,et al.  Sloppiness, robustness, and evolvability in systems biology. , 2008, Current opinion in biotechnology.

[61]  D. Lauffenburger,et al.  Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death , 2008, PLoS biology.

[62]  D. Lauffenburger,et al.  Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. , 2008, Molecular cell.

[63]  D. Andrews,et al.  Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax , 2008, Cell.

[64]  M. Rehm,et al.  Dynamics of outer mitochondrial membrane permeabilization during apoptosis , 2009, Cell Death and Differentiation.

[65]  A. Hoffmann,et al.  Integrating Computational and Biochemical Studies to Explore Mechanisms in NF-κB Signaling* , 2009, Journal of Biological Chemistry.

[66]  Mark A. Girolami,et al.  Estimating Bayes factors via thermodynamic integration and population MCMC , 2009, Comput. Stat. Data Anal..

[67]  R. Eils,et al.  Understanding apoptosis by systems biology approaches. , 2009, Molecular bioSystems.

[68]  David J. Klinke,et al.  An empirical Bayesian approach for model-based inference of cellular signaling networks , 2009, BMC Bioinformatics.

[69]  D. Lauffenburger,et al.  Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data , 2009, Molecular systems biology.

[70]  Roland Eils,et al.  Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model , 2009, PLoS Comput. Biol..

[71]  P. Sorger,et al.  Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , 2009, Nature.

[72]  Frédéric Y. Bois,et al.  GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models , 2009, Bioinform..

[73]  M. Girolami,et al.  Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. , 2010, Science signaling.

[74]  D. Green,et al.  The BCL-2 family reunion. , 2010, Molecular cell.

[75]  William W. Chen,et al.  Classic and contemporary approaches to modeling biochemical reactions. , 2010, Genes & development.

[76]  D. Andrews,et al.  Still embedded together binding to membranes regulates Bcl-2 protein interactions , 2010, Oncogene.

[77]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[78]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[79]  Roland Eils,et al.  Dynamics within the CD95 death-inducing signaling complex decide life and death of cells , 2010, Molecular systems biology.

[80]  Kenneth L. Ho,et al.  Bistability in Apoptosis by Receptor Clustering , 2009, PLoS Comput. Biol..

[81]  A. Ashkenazi,et al.  New insights into apoptosis signaling by Apo2L/TRAIL , 2010, Oncogene.

[82]  Holger Conzelmann,et al.  Rapid phospho-turnover by receptor tyrosine kinases impacts downstream signaling and drug binding. , 2011, Molecular cell.

[83]  Douglas A Lauffenburger,et al.  Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis , 2011, Molecular systems biology.

[84]  Peter K. Sorger,et al.  Measuring and Modeling Apoptosis in Single Cells , 2011, Cell.

[85]  Johan Paulsson,et al.  Separating intrinsic from extrinsic fluctuations in dynamic biological systems , 2011, Proceedings of the National Academy of Sciences.

[86]  Peter K. Sorger,et al.  Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis , 2012, PLoS Comput. Biol..