A Projected Algebraic Multigrid Method for Linear Complementarity Problems

We present an algebraic version of an iterative multigrid method for obstacle problems, called projected algebraic multigrid (PAMG) here. We show that classical AMG algorithms can easily be extended to deal with this kind of problem. This paves the way for efficient multigrid solution of obstacle problems with partial differential equations arising, for example, in financial engineering.

[1]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[2]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[3]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[4]  Jari Toivanen,et al.  Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.

[5]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[6]  A. Brandt,et al.  Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .

[7]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[8]  Kazufumi Ito,et al.  Lagrange Multiplier Approach with Optimized Finite Difference Stencils for Pricing American Options under Stochastic Volatility , 2009, SIAM J. Sci. Comput..

[9]  A. Krechel,et al.  Operator Dependent Interpolation in Algebraic Multigrid , 1998 .

[10]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[11]  Cornelis W. Oosterlee,et al.  On multigrid for linear complementarity problems with application to American-style options. , 2003 .

[12]  Klaus Stüben,et al.  Parallel algebraic multigrid based on subdomain blocking , 2001, Parallel Comput..

[13]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[14]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[15]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[16]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[17]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[18]  Gabriel Wittum,et al.  On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .

[19]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[20]  R. Hoppe Multigrid Algorithms for Variational Inequalities , 1987 .

[21]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[22]  R. Kornhuber Monotone multigrid methods for elliptic variational inequalities I , 1994 .

[23]  K. Stuben,et al.  Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .

[24]  C. M. Elliott,et al.  Weak and variational methods for moving boundary problems , 1982 .

[25]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[26]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .