Heuristic formulation of time-frequency distributions

[1]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[2]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[3]  M. Wickerhauser,et al.  Wavelets and time-frequency analysis , 1996, Proc. IEEE.

[4]  Dennis Gabor,et al.  Theory of communication , 1946 .

[5]  Mohamed A. Deriche,et al.  A novel fingerprint image compression technique using wavelets packets and pyramid lattice vector quantization , 2002, IEEE Trans. Image Process..

[6]  Boualem Boashash,et al.  Note on the use of the Wigner distribution for time-frequency signal analysis , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  Lalu Mansinha,et al.  Localization of the complex spectrum: the S transform , 1996, IEEE Trans. Signal Process..

[8]  P. M. Bentley,et al.  Wavelet transforms: an introduction , 1994 .

[9]  Douglas L. Jones,et al.  A high resolution data-adaptive time-frequency representation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[10]  Robert J. Marks,et al.  The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[11]  L. Storey,et al.  An investigation of whistling atmospherics , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  W. Koenig,et al.  The Sound Spectrograph * , 2011 .

[13]  Boualem Boashash,et al.  Cross spectral analysis of nonstationary processes , 1990, IEEE Trans. Inf. Theory.

[14]  Boualem Boashash,et al.  An efficient real-time implementation of the Wigner-Ville distribution , 1987, IEEE Trans. Acoust. Speech Signal Process..

[15]  Mohamed A. Deriche,et al.  An efficient quantization technique for wavelet coefficients of fingerprint images , 1997, Signal Process..

[16]  William J. Williams,et al.  Improved time-frequency representation of multicomponent signals using exponential kernels , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  Morris J. Levin,et al.  Instantaneous spectra and ambiguity functions (Corresp.) , 1964, IEEE Trans. Inf. Theory.

[18]  A. Cohen,et al.  Wavelets: the mathematical background , 1996, Proc. IEEE.

[19]  Boualem Boashash,et al.  Time-Frequency Signal Analysis: Methods and Applications. , 1993 .

[20]  Roland Wilson,et al.  A generalized wavelet transform for Fourier analysis: The multiresolution Fourier transform and its application to image and audio signal analysis , 1992, IEEE Trans. Inf. Theory.

[21]  L. Cohen Generalized Phase-Space Distribution Functions , 1966 .

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Boualem Boashash,et al.  High resolution Wigner-Ville analysis , 1987 .

[24]  W. Martin,et al.  Time-frequency analysis of random signals , 1982, ICASSP.

[25]  Amro El-Jaroudi,et al.  Iterative instantaneous frequency estimation and adaptive matched spectrogram , 1998, Signal Process..

[26]  H. Margenau,et al.  Correlation between Measurements in Quantum Theory , 1961 .

[27]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[28]  S. Qian,et al.  Joint time-frequency analysis , 1999, IEEE Signal Process. Mag..

[29]  Orhan Arikan,et al.  Short-time Fourier transform: two fundamental properties and an optimal implementation , 2003, IEEE Trans. Signal Process..

[30]  Carl W. Helstrom,et al.  An expansion of a signal in Gaussian elementary signals (Corresp.) , 1966, IEEE Trans. Inf. Theory.

[31]  J. Kirkwood Quantum Statistics of Almost Classical Assemblies , 1933 .

[32]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[33]  B. Boashash,et al.  Application of the Wigner–Ville Distribution to Temperature Gradient Microstructure: A New Technique to Study Small-Scale Variations , 1986 .

[34]  Boualem Boashash,et al.  High resolution processing techniques for temporal and spatial signals , 1991 .

[35]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[36]  Kannan Ramchandran,et al.  Tilings of the time-frequency plane: construction of arbitrary orthogonal bases and fast tiling algorithms , 1993, IEEE Trans. Signal Process..

[37]  August W. Rihaczek,et al.  Signal energy distribution in time and frequency , 1968, IEEE Trans. Inf. Theory.

[38]  Pradipta Kishore Dash,et al.  Hybrid S-transform and Kalman filtering approach for detection and measurement of short duration disturbances in power networks , 2004, IEEE Transactions on Instrumentation and Measurement.

[39]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[40]  Simon Haykin,et al.  Advances in spectrum analysis and array processing , 1991 .

[41]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[42]  C. Page Instantaneous Power Spectra , 1952 .

[43]  Jae Lim,et al.  Signal reconstruction from short-time Fourier transform magnitude , 1983 .

[44]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.