Well-posed Bayesian Inverse Problems: beyond Gaussian priors

[1]  James M. Drake,et al.  A Bayesian Approach for Energy-Based Estimation of Acoustic Aberrations in High Intensity Focused Ultrasound Treatment , 2016, Communications in Computational Physics.

[2]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[3]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[4]  Bamdad Hosseini,et al.  Well-Posed Bayesian Inverse Problems with Infinitely Divisible and Heavy-Tailed Prior Measures , 2016, SIAM/ASA J. Uncertain. Quantification.

[5]  Lassi Roininen,et al.  Cauchy difference priors for edge-preserving Bayesian inversion , 2016, Journal of Inverse and Ill-posed Problems.

[6]  C. Borell Convex measures on locally convex spaces , 1974 .

[7]  Well-posed Bayesian inverse problems and heavy-tailed stable Banach space priors , 2016 .

[8]  Zheng Wang,et al.  Bayesian Inverse Problems with l1 Priors: A Randomize-Then-Optimize Approach , 2016, SIAM J. Sci. Comput..

[9]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[10]  Felix Lucka,et al.  Fast Gibbs sampling for high-dimensional Bayesian inversion , 2016, 1602.08595.

[11]  Bamdad Hosseini,et al.  Well-Posed Bayesian Inverse Problems: Priors with Exponential Tails , 2016, SIAM/ASA J. Uncertain. Quantification.

[12]  J. Stockie,et al.  Bayesian estimation of airborne fugitive emissions using a Gaussian plume model , 2016, 1602.09053.

[13]  Michael Unser,et al.  An Introduction to Sparse Stochastic Processes , 2014 .

[14]  A. Stuart,et al.  Besov priors for Bayesian inverse problems , 2011, 1105.0889.

[15]  Omar Ghattas,et al.  A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors , 2015 .