Leveraging Vision Reconstruction Pipelines for Satellite Imagery

Reconstructing 3D geometry from satellite imagery is an important and growing topic of research. However, disparities exist between how this 3D reconstruction problem is handled in the remote sensing context and how multi-view reconstruction pipelines have been developed in the computer vision community. In this paper, we explore whether state-of-the-art reconstruction pipelines from the vision community can be applied to the satellite imagery. Along the way, we address several challenges adapting vision-based structure from motion and multi-view stereo methods. We show that vision pipelines can offer competitive speed and accuracy in the satellite context.

[1]  Enric Meinhardt,et al.  MGM: A Significantly More Global Matching for Stereovision , 2015, BMVC.

[2]  R. Hartley,et al.  The Cubic Rational Polynomial Camera Model , 2001 .

[3]  Julien Michel,et al.  An automatic and modular stereo pipeline for pushbroom images , 2014 .

[4]  Julien Michel,et al.  Automatic sensor orientation refinement of Pléiades stereo images , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[5]  Yong Hu Understanding the Rational Function Model : Methods and Applications , 2004 .

[6]  Jan-Michael Frahm,et al.  Minimal Solvers for 3D Geometry from Satellite Imagery , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[7]  Myron Brown,et al.  METRIC EVALUATION PIPELINE FOR 3D MODELING OF URBAN SCENES , 2017 .

[8]  Marc Bosch,et al.  A multiple view stereo benchmark for satellite imagery , 2016, 2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[9]  Carsten Rother,et al.  PatchMatch Stereo - Stereo Matching with Slanted Support Windows , 2011, BMVC.

[10]  Tomás Pajdla,et al.  Multi-view reconstruction preserving weakly-supported surfaces , 2011, CVPR 2011.

[11]  Jan-Michael Frahm,et al.  Structure-from-Motion Revisited , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Ian Joughin,et al.  An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery , 2016 .

[13]  C. Tao,et al.  3D Reconstruction methods based on the rational function model , 2002 .

[14]  Daphna Weinshall,et al.  From Reference Frames to Reference Planes: Multi-View Parallax Geometry and Applications , 1998, ECCV.

[15]  Simon Fuhrmann,et al.  MVE-A Multiview Reconstruction Environment , 2014 .

[16]  Georg Kuschk,et al.  LARGE SCALE URBAN RECONSTRUCTION FROM REMOTE SENSING IMAGERY , 2013 .

[17]  C. Tao,et al.  A Comprehensive Study of the Rational Function Model for Photogrammetric Processing , 2001 .

[18]  C. Fraser,et al.  Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery , 2005 .

[19]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[20]  J. Grodecki,et al.  Block Adjustment of High-Resolution Satellite Images Described by Rational Polynomials , 2003 .

[21]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Scott McMichael,et al.  The Ames Stereo Pipeline: NASA's Open Source Software for Deriving and Processing Terrain Data , 2018, Earth and Space Science.

[23]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[24]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[25]  Thierry Toutin,et al.  Review article: Geometric processing of remote sensing images: models, algorithms and methods , 2004 .

[26]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[27]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Changchang Wu,et al.  Towards Linear-Time Incremental Structure from Motion , 2013, 2013 International Conference on 3D Vision.

[29]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[30]  Johannes L. Schönberger,et al.  Supplementary Material for A MultiView Stereo Benchmark with High-Resolution Images and Multi-Camera Videos , 2017 .

[31]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Enric Meinhardt,et al.  Automatic 3D Reconstruction from Multi-date Satellite Images , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[33]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[34]  E. Rupnik,et al.  MicMac – a free, open-source solution for photogrammetry , 2017, Open Geospatial Data, Software and Standards.

[35]  Jan-Michael Frahm,et al.  Pixelwise View Selection for Unstructured Multi-View Stereo , 2016, ECCV.

[36]  ARNO KNAPITSCH,et al.  Tanks and temples , 2017, ACM Trans. Graph..

[37]  Richard Szeliski,et al.  Building Rome in a day , 2009, ICCV.

[38]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .