Hybrid Silicon Photonic – Lithium Niobate Electro-Optic Mach-Zehnder Modulator Beyond 100 GHz

Hybrid Silicon Photonic – Lithium Niobate Electro-Optic Mach-Zehnder Modulator Beyond 100 GHz Peter O. Weigel1,*, Jie Zhao1, Kelvin Fang1, Hasan Al-Rubaye1, Douglas Trotter2, Dana Hood2, John Mudrick2, Christina Dallo2, Andrew T. Pomerene2, Andrew L. Starbuck2, Christopher T. DeRose2, Anthony L. Lentine2, Gabriel Rebeiz1 and Shayan Mookherjea1,* 1 University of California, San Diego, Electrical & Computer Engineering, La Jolla, California 92093-0407, USA 2 Sandia National Laboratories, Applied Microphotonic Systems, Albuquerque, New Mexico, 87185, USA

[1]  Richard M. Osgood,et al.  Fabrication of single-crystal lithium niobate films by crystal ion slicing , 1998 .

[2]  Huiying Hu,et al.  Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .

[3]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[4]  Giovanni Ghione,et al.  Semiconductor Devices for High-Speed Optoelectronics , 2009 .

[5]  Anthony L. Lentine,et al.  Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics , 2016, Scientific Reports.

[6]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[7]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[8]  Alan E. Willner,et al.  High-speed electrooptic modulator characterization using optical spectrum analysis , 2003 .

[9]  Peter O. Weigel,et al.  Reducing the thermal stress in a heterogeneous material stack for large-area hybrid optical silicon-lithium niobate waveguide micro-chips , 2017 .

[10]  M. M. Howerton,et al.  RF Photonic Technology in Optical Fiber Links: Broadband traveling wave modulators in LiNb03 , 2002 .

[11]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[12]  Sasan Fathpour,et al.  High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50  GHz. , 2016, Optics letters.

[13]  Electro-optics Conference on lasers and electro-optics (CLEO) , 2003 .

[14]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[15]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[16]  Dennis W Prather,et al.  110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. , 2016, Optics express.

[17]  F. Baida,et al.  Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application , 2016 .

[18]  D. Pozar Microwave Engineering , 1990 .

[19]  P. C. Willis,et al.  Characterization of frequency dispersion in Ti‐indiffused lithium niobate optical devices , 1987 .

[20]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  O. Mitomi,et al.  Millimeter-wave Ti:LiNbO/sub 3/ optical modulators , 1998 .

[22]  Jonathan Nagy,et al.  Highly linear ring modulator from hybrid silicon and lithium niobate. , 2015, Optics express.

[23]  M. Wood,et al.  Hybrid silicon and lithium niobate electro-optical ring modulator , 2014 .

[24]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[25]  Hasitha Jayatilleka,et al.  A 128 Gb/s PAM4 Silicon Microring Modulator , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[26]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Fabrice Devaux,et al.  Low-loss LiNbO(3) tapered-ridge waveguides made by optical-grade dicing. , 2015, Optics express.