Hybrid Silicon Photonic – Lithium Niobate Electro-Optic Mach-Zehnder Modulator Beyond 100 GHz
暂无分享,去创建一个
Anthony L. Lentine | Gabriel M. Rebeiz | Christopher T. DeRose | Andrew L. Starbuck | Shayan Mookherjea | Gabriel Rebeiz | John Mudrick | Peter O. Weigel | Andrew T. Pomerene | Kelvin Fang | Dana Hood | D. Trotter | A. Lentine | A. Starbuck | A. Pomerene | S. Mookherjea | C. DeRose | Jie Zhao | Kelvin Fang | D. Hood | John P. Mudrick | C. Dallo | Jie Zhao | Hasan Al-Rubaye | Douglas Trotter | Christina Dallo | H. Al-Rubaye | Dana Hood
[1] Richard M. Osgood,et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing , 1998 .
[2] Huiying Hu,et al. Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .
[3] J. Leuthold,et al. High-speed plasmonic modulator in a single metal layer , 2017, Science.
[4] Giovanni Ghione,et al. Semiconductor Devices for High-Speed Optoelectronics , 2009 .
[5] Anthony L. Lentine,et al. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics , 2016, Scientific Reports.
[6] Tsuyoshi Murata,et al. {m , 1934, ACML.
[7] David Hillerkuss,et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.
[8] Alan E. Willner,et al. High-speed electrooptic modulator characterization using optical spectrum analysis , 2003 .
[9] Peter O. Weigel,et al. Reducing the thermal stress in a heterogeneous material stack for large-area hybrid optical silicon-lithium niobate waveguide micro-chips , 2017 .
[10] M. M. Howerton,et al. RF Photonic Technology in Optical Fiber Links: Broadband traveling wave modulators in LiNb03 , 2002 .
[11] D Hillerkuss,et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.
[12] Sasan Fathpour,et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. , 2016, Optics letters.
[13] Electro-optics. Conference on lasers and electro-optics (CLEO) , 2003 .
[14] Y. Vlasov,et al. Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.
[15] Michal Lipson,et al. Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.
[16] Dennis W Prather,et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. , 2016, Optics express.
[17] F. Baida,et al. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application , 2016 .
[18] D. Pozar. Microwave Engineering , 1990 .
[19] P. C. Willis,et al. Characterization of frequency dispersion in Ti‐indiffused lithium niobate optical devices , 1987 .
[20] E.L. Wooten,et al. A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[21] O. Mitomi,et al. Millimeter-wave Ti:LiNbO/sub 3/ optical modulators , 1998 .
[22] Jonathan Nagy,et al. Highly linear ring modulator from hybrid silicon and lithium niobate. , 2015, Optics express.
[23] M. Wood,et al. Hybrid silicon and lithium niobate electro-optical ring modulator , 2014 .
[24] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[25] Hasitha Jayatilleka,et al. A 128 Gb/s PAM4 Silicon Microring Modulator , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).
[26] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[27] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[28] Fabrice Devaux,et al. Low-loss LiNbO(3) tapered-ridge waveguides made by optical-grade dicing. , 2015, Optics express.