Identification of static errors-in-variables models: the rank reducibility problem

The problem of identifying linear static relations from noisy data is investigated under the assumptions of the Frisch scheme. The work presents an attempt to simplify the search for solutions of the related rank reducibility problem. The proposed approach is based on a relaxation of the original problem by means of algebraic manipulations of the non-linear equations which characterize the solution set. It is shown that this method can be advantageously used when particular conditions regarding the number of variables and the number of linear relations are satisfied.

[1]  Brian D. O. Anderson,et al.  Identification of scalar errors-in-variables models with dynamics , 1985, Autom..

[2]  W. Ledermann On the rank of the reduced correlational matrix in multiple-factor analysis , 1937 .

[3]  K. Woodgate,et al.  An upper bound on the number of linear relations identified from noisy data by the Frisch scheme , 1995 .

[4]  J. H. vanSchuppen Stochastic realization problems , 1989 .

[5]  Sabine Van Huffel,et al.  Recent advances in total least squares techniques and errors-in-variables modeling , 1997 .

[6]  Brian D. O. Anderson,et al.  Dynamic errors-in-variables systems with three variables , 1987, Autom..

[7]  Brian D. O. Anderson,et al.  Solution set properties for static errors-in-variables problems , 1996, Autom..

[8]  Umberto Soverini,et al.  The frisch scheme in dynamic system identification , 1990, Autom..

[9]  B. Moor,et al.  A geometrical approach to the maximal corank problem in the analysis of linear relations , 1986, 1986 25th IEEE Conference on Decision and Control.

[10]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[11]  A. Shapiro Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis , 1982 .

[12]  Manfred Deistler,et al.  Linear errors-in-variables models , 1984 .

[13]  Jan de Leeuw,et al.  The rank of reduced dispersion matrices , 1985 .

[14]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[15]  O. F. M. I. N. I. M. U. M. Trace RANK-REDUCIBILITY OF A SYMMETRIC MATRIX AND SAMPLING THEORY , 1982 .

[16]  Roberto Guidorzi,et al.  Identification of the maximal number of linear relations from noisy data , 1995 .

[17]  S. Beghelli,et al.  Rank Reducibility of a Covariance Matrix in the Frisch Scheme , 1996 .