Integrated superconducting detectors on semiconductors for quantum optics applications

Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

[1]  R. Gross,et al.  On-Chip Generation, Routing, and Detection of Resonance Fluorescence. , 2014, Nano letters.

[2]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[3]  Andrea Fiore,et al.  High quality superconducting NbN thin films on GaAs , 2009 .

[4]  F. Smits Measurement of sheet resistivities with the four-point probe , 1958 .

[5]  F. Marsili,et al.  High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. , 2007, Optics express.

[6]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[7]  R. Gross,et al.  A carrier relaxation bottleneck probed in single InGaAs quantum dots using integrated superconducting single photon detectors , 2014, 1407.0593.

[8]  On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide , 2011, 1201.3475.

[9]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[10]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[11]  Jian-Wei Pan,et al.  Experimental demonstration of a BDCZ quantum repeater node , 2008, Nature.

[12]  K. Berggren,et al.  Efficient single photon detection from 500 nm to 5 μm wavelength. , 2012, Nano letters.

[13]  G. Gol'tsman,et al.  Spectral dependency of superconducting single photon detectors , 2010 .

[14]  Michael Tinkham,et al.  Self‐heating hotspots in superconducting thin‐film microbridges , 1974 .

[15]  Katharina Schneider,et al.  Single-photon transistor using a Förster resonance. , 2014, Physical review letters.

[16]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[17]  F. Mattioli,et al.  NbN nanowire superconducting single photon detectors fabricated on MgO substrates , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[18]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[19]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[20]  O. Okunev,et al.  Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications , 2004 .

[21]  S. Safavi-Naeini,et al.  Physical Modeling of Hot-Electron Superconducting Single-Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[22]  M. S. Skolnick,et al.  Waveguide coupled resonance fluorescence from on-chip quantum emitter. , 2014, Nano letters.

[23]  Alexander Korneev,et al.  Quantum detection by current carrying superconducting film , 2001 .

[24]  Val Zwiller,et al.  Low gap superconducting single photon detectors for infrared sensitivity , 2011 .

[25]  A. Zrenner,et al.  Coherent properties of a two-level system based on a quantum-dot photodiode , 2002, Nature.

[26]  Andrea Fiore,et al.  Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths , 2008 .

[27]  I. Milostnaya,et al.  Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared , 2005, IEEE Transactions on Applied Superconductivity.

[28]  R. Gross,et al.  On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors , 2013, Scientific reports.

[29]  A. Politi,et al.  Integrated quantum photonics , 2010 .

[30]  I. Milostnaya,et al.  Ultrafast superconducting single‐photon detectors for near‐infrared‐wavelength quantum communications , 2005 .

[31]  Eric A. Dauler,et al.  Constriction-limited detection efficiency of superconducting nanowire single-photon detectors , 2006, physics/0611260.

[32]  P. Febvre,et al.  NbN multilayer technology on R-plane sapphire , 2001 .

[33]  M. Kamp,et al.  Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides , 2012, 1201.2874.

[34]  M. Siegel,et al.  Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses , 2010 .

[35]  F. Flassig,et al.  Towards on-chip generation, routing and detection of non-classical light , 2015, Photonics West - Optoelectronic Materials and Devices.

[36]  H. Fedder,et al.  Single-photon transistor mediated by interstate Rydberg interactions. , 2014, Physical review letters.

[37]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[38]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[39]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[40]  O. Okunev,et al.  Fabrication and properties of an ultrafast NbN hot-electron single-photon detector , 2001 .

[41]  K. Berggren,et al.  Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors , 2012, 1203.1079.

[42]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[43]  S. Götzinger,et al.  A single-molecule optical transistor , 2009, Nature.

[44]  Thomas F. Krauss,et al.  Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots , 2001 .

[45]  Clemens Matthiesen,et al.  Subnatural linewidth single photons from a quantum dot. , 2012, Physical review letters.

[46]  D. Butler,et al.  Fabrication of NbN thin films by reactive sputtering , 1993 .

[47]  C. Voisin,et al.  Optically gated resonant emission of single quantum dots. , 2011, Physical review letters.

[48]  Andrea Fiore,et al.  Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications , 2010 .

[49]  C. Weisbuch,et al.  Spontaneous emission enhancement of quantum dots in a photonic crystal wire. , 2005, Physical review letters.

[50]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[51]  Jean-Michel Gérard,et al.  InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si , 1996 .

[52]  R. Gross,et al.  Optimisation of NbN thin films on GaAs substrates for in-situ single photon detection in structured photonic devices , 2012, 1212.2038.

[53]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[54]  M. Amann,et al.  A Waveguide-Coupled On-Chip Single Photon Source , 2012, 1201.5153.