Relativistic effects in confined helium-like atoms

[1]  C. Lee,et al.  Role of various dielectric environment matrices of InP/ZnS core/shell quantum dot on optical gain coefficient , 2020, The European Physical Journal D.

[2]  S. Evangelou Nonlinear optical absorption coefficient and refractive index change in symmetric semiconductor nanostructures: Comparison between different methods , 2020 .

[3]  M. Mora-Ramos,et al.  Electron-related nonlinear optical properties of cylindrical quantum dot with the Rosen–Morse axial potential , 2020, Communications in Theoretical Physics.

[4]  M. Solaimani,et al.  Optical properties of two dimensional fractal shaped nanostructures: Comparison of Sierpinski triangles and Sierpinski carpets , 2020 .

[5]  J. Jacob,et al.  Biologically synthesized ZnS Quantum Dots as fluorescent probes for Lead (II) Sensing. , 2020, Luminescence : the journal of biological and chemical luminescence.

[6]  D. Stojanović,et al.  Intersubband transitions in spherical quantum dot quantum well nanoparticle , 2020 .

[7]  S. Sakiroglu,et al.  Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field , 2020 .

[8]  S. Purohit,et al.  Linear and third order nonlinear optical properties of GaAs quantum dot in terahertz region , 2020 .

[9]  V. Prasad,et al.  Particle confined in modified ring-shaped potential , 2020, Physica Scripta.

[10]  S. Sakiroglu,et al.  Impurity-modulated optical response of a disc-shaped quantum dot subjected to laser radiation , 2020 .

[11]  C. Lee,et al.  Effects of External Magnetic Fields on Optical Properties of an Oxide Quantum Dot Using the Smorodinsky–Winternitz Potential , 2020, Journal of Electronic Materials.

[12]  M. Solaimani,et al.  The effects of close packing and electric fields on the optical properties of three-dimensionally stacked quantum dots , 2020 .

[13]  Ş. E. Okan,et al.  The Effect on the Optical Absorption Coefficients due to the Positions in the Plane of Square GaAs / Al(GaAs) Quantum Well Wire under the Laser Field , 2019 .

[14]  Xiu-qing Wang,et al.  Effects of temperature and magnetic field on the ground state binding energy of the strong coupling magneto-polaron in an RbCl asymmetrical semi-exponential quantum well , 2019, International Journal of Modern Physics B.

[15]  M. Ghosh,et al.  Exploring the nonlinear optical properties of impurity doped quantum dots in the light of noise-binding energy interplay , 2019, Results in Physics.

[16]  V. Pavlovic,et al.  Effect of magnetic field on absorption coefficients, refractive index changes and group index of spherical quantum dot with hydrogenic impurity , 2019, Optical Materials.

[17]  M. Karimi,et al.  Effects of spin–orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring , 2019, The European Physical Journal B.

[18]  C. F. Ramirez-Gutierrez,et al.  Impact of a topological defect and Rashba spin-orbit interaction on the thermo-magnetic and optical properties of a 2D semiconductor quantum dot with Gaussian confinement , 2018, Physica E: Low-dimensional Systems and Nanostructures.

[19]  Manoj Kumar,et al.  Influence of hydrostatic pressure and spin orbit interaction on optical properties in quantum wire , 2019, Physica B: Condensed Matter.

[20]  M. Ghosh,et al.  Analyzing the correction factor relevant to Kerr nonlinearity in impurity doped quantum dots for a passage from non-absorbing to absorbing media: Role of noise , 2018, Journal of Physics and Chemistry of Solids.

[21]  O. Motapon,et al.  Electric dipole polarizability of two electron quantum dots and endohedrally confined helium and helium-like atoms , 2018, Journal of Physics B: Atomic, Molecular and Optical Physics.

[22]  P. Silotia,et al.  Second harmonic generation in a disk shaped quantum dot in the presence of spin-orbit interaction , 2018, Physics Letters A.

[23]  B. Dutta,et al.  Explicitly correlated variational estimates of the energy levels of negative hydrogen ion under spatial confinement , 2018 .

[24]  M. Kirak,et al.  An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature , 2018 .

[25]  O. Motapon,et al.  Electronic structure of on- and off-center hydrogenic impurities in quantum dots and quantum nanowires: energies and dipole polarizability , 2018, Canadian Journal of Physics.

[26]  S. Sakiroglu,et al.  Electric and magnetic field modulated energy dispersion, conductivity and optical response in double quantum wire with spin-orbit interactions , 2018 .

[27]  S. Saha,et al.  Exploration of dynamic dipole polarizability of impurity doped quantum dots in presence of noise , 2018 .

[28]  Li-Li Wang,et al.  Effect of conduction band parabolicity on the spectrum and binding energy of a hydrogenic impurity in GaAs spherical quantum dots , 2018 .

[29]  Ş. E. Okan,et al.  Binding energy of a hydrogenic impurity in a coaxial quantum wire with an insulator layer , 2017 .

[30]  A. Zamani,et al.  Absorption coefficient and refractive index changes of a quantum ring in the presence of spin-orbit couplings: Temperature and Zeeman effects , 2017 .

[31]  A. Zamani,et al.  Electronic structure and Landé g-factor of a quantum ring in the presence of spin-orbit coupling: Temperature and Zeeman effect , 2017 .

[32]  A. Özmen,et al.  Investigation of magnetic field effects on binding energies in spherical quantum dot with finite confinement potential , 2017 .

[33]  C. Stan,et al.  Magnetic-field dependence of the impurity states in a dome-shaped quantum dot , 2017 .

[34]  K. Jayakumar,et al.  Helium like impurity in CdTe/ Cd 1-x Mn x Te semimagnetic semiconductors under magnetic field: Dimensionality effect on electron - Electron interaction , 2017 .

[35]  A. Özmen,et al.  Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field , 2017 .

[36]  S. Saha,et al.  Exploring Optical Dielectric Function of Impurity Doped Quantum Dots in Presence of Gaussian White Noise , 2017 .

[37]  K. Guo,et al.  Donor-impurity-related optical absorption and refractive index changes in GaAs/AlGaAs core/shell spherical quantum dots , 2016 .

[38]  Ş. E. Okan,et al.  Energy levels of GaAs/Al x Ga 1-x As/AlAs spherical quantum dot with an impurity , 2016 .

[39]  N. Bettahar,et al.  Magneto-optical properties in inhomogeneous quantum dot: The Aharonov-Bohm oscillations effect , 2016 .

[40]  J. Garza,et al.  Roothaan's approach to solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior. , 2015, The Journal of chemical physics.

[41]  Bekir Çakir,et al.  Linear and nonlinear absorption coefficients of spherical two-electron quantum dot , 2015, Comput. Phys. Commun..

[42]  A. Singh,et al.  Relativistic fine structure and the energy levels of confined multi-electron GaAs quantum dot with hydrogenic impurity within the effective mass approximation in presence of magnetic field , 2015 .

[43]  A. Özmen,et al.  Electronic structure of two-electron quantum dot with parabolic potential , 2015 .

[44]  A. Jorio,et al.  Linear and nonlinear intra-conduction band optical absorption in (In,Ga)N/GaN spherical QD under hydrostatic pressure , 2014 .

[45]  A. Özmen,et al.  Electronic structure and relativistic terms of one-electron spherical quantum dot , 2013 .

[46]  A. Özmen,et al.  Computation of relativistic terms in a spherical quantum dot , 2013 .

[47]  M. Barseghyan,et al.  Simultaneous effects of hydrostatic pressure and spin–orbit coupling on linear and nonlinear intraband optical absorption coefficients in a GaAs quantum ring , 2013 .

[48]  A. Jafari,et al.  Hydrogenic impurity states in a spherical quantum antidot: Spin-orbit interaction, relativistic correction, and diamagnetic susceptibility , 2012 .

[49]  F. El-Gammal,et al.  Atomic Properties of the Two-Electron System using Variational Monte Carlo Technique , 2012 .

[50]  J. Garza,et al.  Basis set effects on the Hartree–Fock description of confined many-electron atoms , 2012 .

[51]  A. Özmen,et al.  Computation of ionization and various excited state energies ofhelium and helium-like quantum dots , 2011 .

[52]  N. Aquino,et al.  Spherically compressed helium atom described by perturbative and variational methods , 2010 .

[53]  A. Özmen,et al.  CALCULATION OF ELECTRONIC STRUCTURE OF A SPHERICAL QUANTUM DOT USING A COMBINATION OF QUANTUM GENETIC ALGORITHM AND HARTREE–FOCK–ROOTHAAN METHOD , 2008 .

[54]  S. Pal,et al.  Electronic structure of spherical quantum dots using coupled cluster method. , 2007, The Journal of chemical physics.

[55]  A. Özmen,et al.  INVESTIGATION OF ELECTRONIC STRUCTURE OF A QUANTUM DOT USING SLATER-TYPE ORBITALS AND QUANTUM GENETIC ALGORITHM , 2007 .

[56]  Y. Yakar Evaluation of Orbital‐ and Ground State Energies of Some Open‐ and Closed‐Shell Atoms over Integer and Noninteger Slater Type Orbitals , 2007 .

[57]  A. Özmen,et al.  Evaluation of Two‐center One‐ and Two‐electron Integrals over Slater Type Orbitals , 2006 .

[58]  J. Garza,et al.  Confined helium atom low-lying S states analyzed through correlated Hylleraas wave functions and the Kohn-Sham model. , 2006, The Journal of chemical physics.

[59]  S. Liaw,et al.  Relativistic solution of hydrogen in a spherical cavity , 1999 .

[60]  Chun-Ching Yang,et al.  Eigenstates and fine structure of a hydrogenic impurity in a spherical quantum dot , 1998 .

[61]  Kenny,et al.  Relativistic corrections to atomic energies from quantum Monte Carlo calculations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[62]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[63]  I. I. Sobelʹman Introduction to the theory of atomic spectra , 1972 .