Luminescence of lead sulfide nanocrystals in a silicate glass matrix

Luminescence of lead sulfide (PbS) nanocrystals with mean diameter 6 nm in a silicate glass matrix that emit in wavelength region 1.5 μm (0.827 eV) is studied. The average luminescence decay time is estimated to be 2.7 μs. Decreasing the temperature is shown to result in a shift of the emission spectrum to lower energies with a corresponding temperature coefficient of 64 μeV/K. Anti-Stokes luminescence of the PbS nanocrystals is detected with a spectral shift of 45 meV for the emission band maximum relative to the excitation energy.

[1]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[2]  K. Yamashita,et al.  Ab Initio Study of Temperature and Pressure Dependence of Energy and Phonon-Induced Dephasing of Electronic Excitations in CdSe and PbSe Quantum Dots† , 2008 .

[3]  A. Zunger,et al.  The Excitonic Exchange Splitting and Radiative Lifetime in PbSe Quantum Dots , 2007 .

[4]  Feng Wang,et al.  Luminescent nanomaterials for biological labelling , 2005, Nanotechnology.

[5]  O. Madelung Semiconductors: Data Handbook , 2003 .

[6]  F. Wise,et al.  Photoluminescence spectroscopy of PbSe nanocrystals , 2007 .

[7]  T. Krauss,et al.  Fluorescence spectroscopy of single lead sulfide quantum dots. , 2006, Nano letters.

[8]  M. Beard,et al.  PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. , 2006, Journal of the American Chemical Society.

[9]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[10]  W. L. Vos,et al.  Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models , 2006, physics/0607043.

[11]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[12]  F. Wise,et al.  SIZE-DEPENDENT TEMPERATURE VARIATION OF THE ENERGY GAP IN LEAD-SALT QUANTUM DOTS , 1998 .

[13]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[14]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[15]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[16]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[17]  Rudin,et al.  Temperature-dependent exciton linewidths in semiconductors. , 1990, Physical review. B, Condensed matter.

[18]  E. Rafailov,et al.  Mode-locked quantum-dot lasers , 2007 .

[19]  R. Schaller,et al.  Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. , 2005, Physical review letters.

[20]  Alexander M. Malyarevich,et al.  Semiconductor-doped glass saturable absorbers for near-infrared solid- state lasers , 2008 .

[21]  P. Morais,et al.  Anti-Stokes photoluminescence in nanocrystal quantum dots , 2002 .

[22]  Klaas Nicolay,et al.  Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. , 2006, Nano letters.

[23]  C. Delerue,et al.  Confinement effects in PbSe quantum wells and nanocrystals , 2004 .

[24]  A. I. Ekimov,et al.  Quantum size effect in semiconductor microcrystals , 1985 .

[25]  P. Liljeroth,et al.  Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. , 2005, Small.

[26]  Frank W. Wise,et al.  Resonant Energy Transfer in PbS Quantum Dots , 2007 .