Lightning radiometry in visible and infrared bands

[1]  H. Christian,et al.  Data-Driven Simulations of the Lightning Return Stroke Channel Properties , 2022, IEEE transactions on electromagnetic compatibility (Print).

[2]  Z. Ding,et al.  Toward a Better Understanding of Negative Lightning Stepped Leaders , 2022, SSRN Electronic Journal.

[3]  N. Østgaard,et al.  Multispectral Optical Diagnostics of Lightning from Space , 2022, Remote. Sens..

[4]  N. Østgaard,et al.  Optical emissions associated with narrow bipolar events from thunderstorm clouds penetrating into the stratosphere , 2021, Nature Communications.

[5]  P. Krehbiel,et al.  Electrostatic Conditions That Produce Fast Breakdown in Thunderstorms , 2021, Journal of Geophysical Research: Atmospheres.

[6]  F. J. Pérez-Invernón,et al.  High‐Speed Spectroscopy of Lightning‐Like Discharges: Evidence of Molecular Optical Emissions , 2021, Journal of Geophysical Research: Atmospheres.

[7]  M. D. Tran,et al.  Evidence and Inferred Mechanism of Collisions of Downward Stepped‐Leader Branches in Negative Lightning , 2021, Geophysical Research Letters.

[8]  H. Christian,et al.  Vertical Temperature Profile of Natural Lightning Return Strokes Derived From Optical Spectra , 2021, Journal of Geophysical Research: Atmospheres.

[9]  M. D. Tran,et al.  On a Possible Mechanism of Reactivation of Decayed Branches of Negative Stepped Leaders , 2020, Journal of Geophysical Research: Atmospheres.

[10]  V. Reglero,et al.  Blue Optical Observations of Narrow Bipolar Events by ASIM Suggest Corona Streamer Activity in Thunderstorms , 2020, Journal of Geophysical Research: Atmospheres.

[11]  N. Østgaard,et al.  Modeling lightning observations from space-based platforms (CloudScat.jl 1.0) , 2020, Geoscientific Model Development.

[12]  W. Koshak,et al.  The Plasma Nature of Lightning Channels and the Resulting Nonlinear Resistance , 2019, Journal of Geophysical Research: Atmospheres.

[13]  P. Krehbiel,et al.  Griffiths and Phelps Lightning Initiation Model, Revisited , 2019, Journal of Geophysical Research: Atmospheres.

[14]  H. Christian,et al.  Triggered Lightning Spectroscopy: 2. A Quantitative Analysis , 2019, Journal of Geophysical Research: Atmospheres.

[15]  Nikolai Østgaard,et al.  The ASIM Mission on the International Space Station , 2019, Space Science Reviews.

[16]  M. Uman,et al.  Triggered Lightning Return Stroke Luminosity up to 1 km in Two Optical Bands , 2018, Journal of Geophysical Research: Atmospheres.

[17]  E. Krider,et al.  Optical power and energy radiated by return strokes in rocket‐triggered lightning , 2017 .

[18]  Hugh J. Christian,et al.  Triggered lightning spectroscopy: Part 1. A qualitative analysis , 2017 .

[19]  Yang Zhang,et al.  Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms , 2016, Nature Communications.

[20]  M. Uman,et al.  Lightning current and luminosity at and above channel bottom for return strokes and M‐components , 2015 .

[21]  A. Gleizes,et al.  Radiation of long and high power arcs , 2015 .

[22]  M. Uman,et al.  Correlation between the channel‐bottom light intensity and channel‐base current of a rocket‐triggered lightning flash , 2014 .

[23]  M. Uman,et al.  Simultaneously measured lightning return stroke channel‐base current and luminosity , 2014 .

[24]  Alexander Berk,et al.  MODTRAN6: a major upgrade of the MODTRAN radiative transfer code , 2014, Defense + Security Symposium.

[25]  Victor P. Pasko,et al.  Dynamics of streamer‐to‐leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets , 2013 .

[26]  E. Krider,et al.  Optical power and energy radiated by natural lightning , 2013 .

[27]  William J. Koshak,et al.  The GOES-R GeoStationary Lightning Mapper (GLM) , 2012 .

[28]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[29]  C. Laux,et al.  Experimental study and modeling of infrared air plasma radiation , 1995 .

[30]  Richard J. Blakeslee,et al.  Diffusion model for lightning radiative transfer , 1994 .

[31]  E. Philip Krider,et al.  On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes , 1992 .

[32]  C. Weidman,et al.  Lightning spectra in the 850- to 1400-nm near-infrared region , 1989 .

[33]  R. L. Gardner,et al.  Lightning return stroke. A numerical calculation of the optical radiation , 1986 .

[34]  Richard E. Orville,et al.  Absolute Spectral Irradiance Measurements of Lightning from 375 to 880 nm , 1984 .

[35]  Martin A. Uman,et al.  Variation in light intensity with height and time from subsequent lightning return strokes , 1983 .

[36]  E. Philip Krider,et al.  The optical and radiation field signatures produced by lightning return strokes , 1982 .

[37]  W A Traub,et al.  Theoretical atmospheric transmission in the mid-and far-infrared at four altitudes. , 1976, Applied optics.

[38]  Martin A. Uman,et al.  Peak power and energy dissipation in a single‐stroke lightning flash , 1968 .

[39]  M. Uman,et al.  The optical continuum of lightning , 1965 .

[40]  M. Uman The continuum spectrum of lightning , 1963 .