Honeycomb Hubbard Model at van Hove Filling Part I: Construction of the Schwinger Functions
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Alessandro Giuliani,et al. The Two-Dimensional Hubbard Model on the Honeycomb Lattice , 2008, 0811.1881.
[3] A. Leśniewski. Effective action for the Yukawa2 quantum field theory , 1987 .
[4] A. Leśniewski. Effective action for the Yukawa-2 quantum field theory , 1987 .
[5] V. Rivasseau,et al. Topological Graph Polynomials and Quantum Field Theory, Part I: Heat Kernel Theories , 2008, 0811.0186.
[6] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[7] U. Starke,et al. Tuning the doping level of graphene in the vicinity of the Van Hove singularity via ytterbium intercalation , 2019, Physical Review B.
[8] V. Rivasseau,et al. How to Resum Feynman Graphs , 2013, 1304.5913.
[9] V. Anderson. "Luttinger-liquid" behavior of the normal metallic state of the 2D Hubbard model. , 1990, Physical review letters.
[10] E. Trubowitz,et al. AN infinite volume expansion for many Fermion Green's functions , 1992 .
[11] E. Trubowitz,et al. Perturbation theory for many fermion systems , 1990 .
[12] F. Guinea,et al. The electronic properties of graphene , 2007, Reviews of Modern Physics.
[13] P. Wallace. The Band Theory of Graphite , 1947 .
[14] Michael I. Weinstein,et al. Honeycomb Lattice Potentials and Dirac Points , 2012, 1202.3839.
[15] Nellie Clarke Brown. Trees , 1896, Savage Dreams.
[16] F. Guinea,et al. Electron-Electron Interactions in Graphene: Current Status and Perspectives , 2010, 1012.3484.
[17] J. Magnen,et al. Renormalization of the 2-Point Function of the Hubbard Model at Half-Filling , 2004, cond-mat/0409231.
[18] Giovanni Gallavotti,et al. Renormalization theory in four-dimensional scalar fields (I) , 1985 .
[19] V. Mastropietro,et al. Universality of One-Dimensional Fermi Systems, II. The Luttinger Liquid Structure , 2013, 1303.3684.
[20] J. M. Luttinger. An Exactly Soluble Model of a Many‐Fermion System , 1963 .
[21] V. Mastropietro,et al. Ward Identities and Chiral Anomaly in the Luttinger Liquid , 2004, cond-mat/0409049.
[22] K. Gawȩdzki,et al. Gross-Neveu model through convergent perturbation expansions , 1985 .
[23] A. Zakharov,et al. Introducing strong correlation effects into graphene by gadolinium intercalation , 2019, Physical Review B.
[24] Giovanni Gallavotti,et al. Perturbation theory of the Fermi surface in a quantum liquid. A general quasiparticle formalism and one-dimensional systems , 1990 .
[25] T. Kennedy,et al. Mayer expansions and the Hamilton-Jacobi equation , 1987 .
[26] G. Fitzgerald,et al. 'I. , 2019, Australian journal of primary health.
[27] T. Ohta,et al. Extended van Hove singularity and superconducting instability in doped graphene. , 2010, Physical review letters.
[28] J. Hubbard. Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[29] Continuous Renormalization for Fermions and Fermi Liquid Theory , 1997, cond-mat/9706188.
[30] Tsuyoshi Murata,et al. {m , 1934, ACML.
[31] Pertubation theory around nonnested fermi surfaces. I. Keeping the fermi surface fixed , 1995, cond-mat/9509006.