Topological Semantics and Bisimulations for Intuitionistic Modal Logics and Their Classical Companion Logics

We take the well-known intuitionistic modal logic of Fischer Servi with semantics in bi-relational Kripke frames, and give the natural extension to topological Kripke frames. Fischer Servi's two interaction conditions relating the intuitionistic pre-order (or partial-order) with the modal accessibility relation generalise to the requirement that the relation and its inverse be lower semi-continuous with respect to the topology. We then investigate the notion of topological bisimulation relations between topological Kripke frames, as introduced by Aiello and van Benthem, and show that their topology-preserving conditions are equivalent to the properties that the inverse-relation and the relation are lower semi-continuous with respect to the topologies on the two models. Our first main result is that this notion of topological bisimulation yields semantic preservation w.r.t. topological Kripke models for both intuitionistic tense logics, and for their classical companion multi-modal logics in the setting of the Godel translation. After giving canonical topological Kripke models for the Hilbert-style axiomatizations of the Fischer Servi logic and its classical multi-modal companion logic, we show that the syntactic Godel translation induces a natural semantic map from the intuitionistic canonical model into the canonical model of the classical companion logic, and this map is itself a topological bisimulation.

[1]  Benjamin C. Pierce,et al.  Theoretical Aspects of Computer Software , 2001, Lecture Notes in Computer Science.

[2]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[3]  H. Ono On Some Intuitionistic Modal Logics , 1977 .

[4]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[5]  Rajeev Goré,et al.  Bimodal Logics for Reasoning About Continuous Dynamics , 2000, Advances in Modal Logic.

[6]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[7]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[8]  Frank Wolter,et al.  Advances in Modal Logic 3 , 2002 .

[9]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras. Part I , 1998, Stud Logica.

[10]  Carsten Grefe Fischer Servi's Intuitionistic Modal Logic has the Finite Model Property , 1996, Advances in Modal Logic.

[11]  B. Hilken Topological duality for intuitionistic modal algebras , 2000 .

[12]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras Part II: Duality Theory , 1999, Stud Logica.

[13]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[14]  J. Guéron,et al.  Time and Modality , 2008 .

[15]  M. Chiara Italian Studies in the Philosophy of Science , 1981 .

[16]  F. Wolter,et al.  Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .

[17]  Nobu-Yuki Suzuki An algebraic approach to intuitionistic modal logics in connection with intermediate predicate logics , 1989, Stud Logica.

[18]  Gordon Plotkin,et al.  A framework for intuitionistic modal logics: extended abstract , 1986 .

[19]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[20]  Nicolas Markey,et al.  Non-deterministic Temporal Logics for General Flow Systems , 2004, HSCC.

[21]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[22]  Marcello M. Bonsangue,et al.  Relating Multifunctions and Predicate Transformers through Closure Operators , 1994, TACS.

[23]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[24]  G. Mints A Short Introduction to Intuitionistic Logic , 2000 .

[25]  Gordon D. Plotkin,et al.  A Framework for Intuitionistic Modal Logics , 1988, TARK.

[26]  Duminda Wijesekera,et al.  Constructive Modal Logics I , 1990, Ann. Pure Appl. Log..

[27]  Ettore Casari,et al.  Logic and the Foundations of Mathematics , 1981 .

[28]  Jennifer M. Davoren,et al.  Topologies, continuity and bisimulations , 1999, RAIRO Theor. Informatics Appl..

[29]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[30]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[31]  G. Servi On modal logic with an intuitionistic base , 1977 .

[32]  W. B. Ewald,et al.  Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.

[33]  R. A. Bull MIPC as the Formalisation of an Intuitionist Concept of Modality , 1966, J. Symb. Log..

[34]  A. Nerode,et al.  Topological semantics for Intuitionistic modal logics, and spatial discretisation by A/D maps , 2022 .

[35]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[36]  Johan van Benthem,et al.  Reasoning About Space: The Modal Way , 2003, J. Log. Comput..

[37]  Gisèle Fischer Servi,et al.  Semantics for a Class of Intuitionistic Modal Calculi , 1980 .

[38]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[39]  Guram Bezhanishvili Varieties of Monadic Heyting Algebras. Part III , 2000, Stud Logica.

[40]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.