Global chaos synchronization of new chaotic system using linear active control

Chaos synchronization is a procedure where one chaotic oscillator is forced to adjust the properties of another chaotic oscillator for all future states. This research paper studies and investigates the global chaos synchronization problem of two identical chaotic systems and two non-identical chaotic systems using the linear active control technique. Based on the Lyapunov stability theory and using the linear active control technique, the stabilizing controllers are designed for asymptotically global stability of the closed-loop system for both identical and non-identical synchronization. Numerical simulations and graphs are imparted to justify the efficiency and effectiveness of the proposed scheme. All simulations have been done by using mathematica 9. © 2014 Wiley Periodicals, Inc. Complexity 21: 379-386, 2015

[1]  Er-Wei Bai,et al.  Synchronization of two Lorenz systems using active control , 1997 .

[2]  Alfred W. Hübler,et al.  Nonlinear response of chemical reaction dynamics : AC corrosion protection , 2013, Complex..

[3]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[4]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[5]  Ju H. Park Chaos synchronization of a chaotic system via nonlinear control , 2005 .

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  Tomasz Kapitaniak,et al.  Controlling chaos by chaos in geophysical systems , 1995 .

[8]  Heng-Hui Chen Global synchronization of chaotic systems via linear balanced feedback control , 2007, Appl. Math. Comput..

[9]  Ayub Khan,et al.  Synchronization of circular restricted three body problem with lorenz hyper chaotic system using a robust adaptive sliding mode controller , 2013, Complex..

[10]  Tao Fan,et al.  Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties , 2014, Complex..

[11]  Santhoji Katare,et al.  Optimal complex networks spontaneously emerge when information transfer is maximized at least expense: A design perspective , 2006, Complex..

[12]  Wei Xu,et al.  Synchronization of two chaotic nonlinear gyros using active control , 2005 .

[13]  Uchechukwu E. Vincent,et al.  Synchronization of identical and non-identical 4-D chaotic systems using active control , 2008 .

[14]  Alexander N. Pisarchik,et al.  Synchronization of Shilnikov chaos in a CO2 laser with feedback , 2001 .

[15]  Zabidin Salleh,et al.  Dynamical Analysis of a Modified Lorenz System , 2013 .

[16]  Chunlai Li,et al.  A novel chaotic system and its topological horseshoe , 2013 .

[17]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[18]  RAJAN RAKKIYAPPAN,et al.  Cluster synchronization for T-S fuzzy complex networks using pinning control with probabilistic time-varying delays , 2015, Complex..

[19]  Mohammad Shahzad,et al.  Global Chaos Identical and Nonidentical Synchronization of a New 3-D Chaotic Systems Using Linear Active Control , 2014 .

[20]  Alfred Hubler,et al.  Which forces reduce entropy production , 2014 .

[21]  Uchechukwu E. Vincent,et al.  Synchronization and anti-synchronization of chaos in an extended Bonhöffer–van der Pol oscillator using active control , 2009 .