Reinforcement mechanisms in MWCNT-filled polycarbonate

The filler/matrix interface in fiber-reinforced polymer composites is critical in controlling load transfer from the matrix to the fiber, failure mechanisms, and degradation. It is not clear, however, how the mechanisms of load transfer in traditional composites apply to nanofiber-filled polymers. This paper is focused on understanding the reinforcement mechanisms in multiwalled carbon nanotube (MWCNT)/bisphenol-A polycarbonate (PC) composites. Strain dependent Raman spectroscopy shows that there is load transfer from the matrix to the nanotubes, and that the efficiency of the load transfer is improved by surface modification of the MWCNT. Dynamic mechanical analysis as well as electron microscopy reveals the presence of a large annular interphase region of immobilized polymer surrounding the embedded nanotubes. Micromechanical modeling of the elastic modulus of the composite that accounts for the limited load transfer to the interior shells of the MWCNT suggests this immobilized polymer provides an additional reinforcement mechanism that is unique for nano-filled composites.

[1]  R. Day,et al.  Strain dependence of the Raman frequencies for different types of carbon fibres , 1987 .

[2]  Sharon C. Glotzer,et al.  Molecular dynamics simulation of a polymer melt with a nanoscopic particle , 2002 .

[3]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[4]  M. Balkanski,et al.  ELASTIC PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES , 2000 .

[5]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[6]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[7]  Frank T. Fisher,et al.  Viscoelastic interphases in polymer–matrix composites: theoretical models and finite-element analysis , 2001 .

[8]  Sarah E. Baker,et al.  Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and Hybridization , 2002 .

[9]  R. Czerw,et al.  Organization of Polymers onto Carbon Nanotubes: A Route to Nanoscale Assembly , 2001 .

[10]  C. Galiotis,et al.  Compressional behaviour of carbon fibres , 1994, Journal of Materials Science.

[11]  F. Chang,et al.  Chemical reactions occurring during the preparation of polycarbonate-epoxy blends , 1997 .

[12]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[13]  E. Giannelis,et al.  Polymer-silicate nanocomposites : Model systems for confined polymers and polymer brushes , 1999 .

[14]  M. Balkanski,et al.  Elastic properties of crystals of single-walled carbon nanotubes , 2000 .

[15]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[16]  M. Panhuis,et al.  A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer , 2002 .

[17]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[18]  R. Short,et al.  Interface molecular engineering of carbon-fiber composites , 1999 .

[19]  J. Favre,et al.  Carbon fibre adhesion to organic matrices , 1972 .

[20]  G. Xu,et al.  Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites , 2001 .

[21]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[22]  H. Wagner,et al.  Interpretation of the fragmentation phenomenon in single‐filament composite experiments , 1990 .

[23]  K. Lozano,et al.  Nanofiber‐reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses , 2001 .

[24]  Frank T. Fisher,et al.  Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites , 2003 .

[25]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .

[26]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[27]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[28]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[29]  George Tsagaropoulos,et al.  Dynamic Mechanical Study of the Factors Affecting the Two Glass Transition Behavior of Filled Polymers. Similarities and Differences with Random Ionomers , 1995 .

[30]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[31]  Zhou Jianjun,et al.  STRAIN ENERGY AND YOUNG'S MODULUS OF SINGLE-WALL CARBON NANOTUBES CALCULATED FROM ELECTRONIC ENERGY-BAND THEORY , 2000 .

[32]  Frank T. Fisher,et al.  Nanomechanics and the Viscoelastic Behavior of Carbon Nanotube-Reinforced Polymers , 2002 .

[33]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[34]  Mark J. Dyer,et al.  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope , 1999 .

[35]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[36]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[37]  L. Brinson,et al.  Elastic and viscoelastic properties of non-bulk polymer interphases in nanotube-reinforced polymers , 2005 .

[38]  K. Liao,et al.  Physical interactions at carbon nanotube-polymer interface , 2003 .

[39]  L. C. Brinson,et al.  A Sign Control Method for Fitting and Interconverting Material Functions for Linearly Viscoelastic Solids , 1997 .

[40]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[41]  L. Schadler,et al.  Fundamentals and applications of micro Raman spectroscopy to strain measurements in fibre reinforced composites , 1995 .

[42]  R. Young,et al.  Raman spectroscopy study of HM carbon fibres: effect of plasma treatment on the interfacial properties of single fibre/epoxy composites , 2002 .

[43]  L. Drzal,et al.  Fiber-Matrix Interfacial Adhesion Improvement in Carbon Fiber-Bisphenol-A Polycarbonate Composites by Polymer Grafting , 2002 .

[44]  T. Tadros Interaction forces between particles containing grafted or adsorbed polymer layers. , 2003, Advances in colloid and interface science.

[45]  R. Young,et al.  The study of model polydiacetylene/epoxy composites , 1984 .

[46]  Zhengwei Pan,et al.  Tensile tests of ropes of very long aligned multiwall carbon nanotubes , 1999 .

[47]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[48]  Linda S. Schadler,et al.  Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites , 2003 .

[49]  S. Ray Rheology of Polymer/Layered Silicate Nanocomposites , 2006 .

[50]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[51]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[52]  Frank T. Fisher,et al.  Effects of nanotube waviness on the modulus of nanotube-reinforced polymers , 2002 .

[53]  M. Skrifvars,et al.  Synthesis of unsaturated polyesters for improved interfacial strength in carbon fibre composites , 2002 .

[54]  Y. Mai,et al.  Engineered interfaces in fiber reinforced composites , 1998 .

[55]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[56]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[57]  R. D. Bradshaw,et al.  Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor , 2003, Composites Science and Technology.

[58]  Part 1 A Raman spectroscopic study , 1990 .

[59]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[60]  D. Bedrov,et al.  A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites , 2002 .

[61]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[62]  J. Tascón,et al.  Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/ polycarbonate composites , 2001 .

[63]  N.m.r. and FT i.r. studies on transreactions and hydroxyl exchanges of bisphenol-A polycarbonate with an epoxy upon heating , 1997 .

[64]  Frank T. Fisher,et al.  Spectral Response and Effective Viscoelastic Properties of Mwnt-Reinforced Polycarbonate , 2004 .

[65]  Costas Galiotis,et al.  Residual stress distribution in carbon fibre/thermoplastic matrix pre-impregnated composite tapes , 1992 .

[66]  Andrew G. Rinzler,et al.  Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy , 2000 .

[67]  T. Cosgrove,et al.  Experimental aspects of polymer adsorption at solid/solution interfaces , 1985 .

[68]  O. K. Tse,et al.  Relaxations of confined chains in polymer nanocomposites: Glass transition properties of poly(ethylene oxide) intercalated in montmorillonite , 1997 .

[69]  Lawrence F. Allard,et al.  Functionalization of Carbon Nanotubes with Polystyrene , 2002 .

[70]  Hui Hu,et al.  End-group and defect analysis of soluble single-walled carbon nanotubes , 2001 .

[71]  R. Smalley,et al.  Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping , 2001 .

[72]  George J. Weng,et al.  Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions , 1984 .