Effect of van der Waals interactions on the structural and elastic properties of black phosphorus

The structural and elastic properties of orthorhombic black phosphorus have been investigated using first-principles calculations based on density functional theory. The structural parameters have been calculated using the local density approximation (LDA), the generalized gradient approximation (GGA), and with several dispersion corrections to include van der Waals interactions. It is found that the dispersion corrections improve the lattice parameters over LDA and GGA in comparison with experimental results. The calculations reproduce well the experimental trends under pressure and show that van der Waals interactions are most important for the crystallographic b axis in the sense that they have the largest effect on the bonding between the phosphorus layers. The elastic constants are calculated and are found to be in good agreement with experimental values. The calculated C22 elastic constant is significantly larger than the C11 and C33 parameters, implying that black phosphorus is stiffer against strain along the a axis than along the b and c axes. From the calculated elastic constants, the mechanical properties, such as bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio are obtained. The calculated Raman active optical phonon frequencies and their pressure variations are in excellent agreement with available experimental results.

[1]  B. Johansson,et al.  The cohesive energy and band structure of black phosphorus , 1990 .

[2]  M. Okajima,et al.  Electrical Investigation of Phase Transition in Black Phosphorus under High Pressure , 1984 .

[3]  Y. Akahama,et al.  Simple-cubic–simple-hexagonal transition in phosphorus under pressure , 1999 .

[4]  A. Morita,et al.  Band structure and optical properties of black phosphorus , 1984 .

[5]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[6]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[7]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[8]  Y. Akahama,et al.  Electrical properties of single-crystal black phosphorus under pressure , 1986 .

[9]  Masahito Yoshizawa,et al.  Thermal and elastic properties of black phosphorus , 1986 .

[10]  J. Burdett,et al.  The pressure-induced black phosphorus to A7 (arsenic) phase transformation: An analysis using the concept of orbital symmetry conservation , 1982 .

[11]  Y. Maruyama,et al.  Optical reflectivity and band structure of black phosphorus , 1983 .

[12]  G. Vaitheeswaran,et al.  Structural, electronic, bonding, and elastic properties of NH3BH3: A density functional study , 2011, J. Comput. Chem..

[13]  T. Bučko,et al.  Spin crossover transition of Fe(phen)2(NCS)2: periodic dispersion-corrected density-functional study. , 2012, Physical chemistry chemical physics : PCCP.

[14]  S. Shi,et al.  Ab initio studies on atomic and electronic structures of black phosphorus , 2010 .

[15]  John P. Perdew,et al.  The exchange-correlation energy of a metallic surface , 1975 .

[16]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[17]  Lars Hedin,et al.  Explicit local exchange-correlation potentials , 1971 .

[18]  S. Suga,et al.  Electrical and optical properties of black phosphorus single crystals , 1983 .

[19]  A. Tkatchenko,et al.  Stacking and registry effects in layered materials: the case of hexagonal boron nitride. , 2010, Physical review letters.

[20]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[21]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[22]  T. L. Bihan,et al.  Structural stability and equation of state of simple-hexagonal phosphorus to 280 GPa: Phase transition at 262 GPa , 2000 .

[23]  M. Duggin A High Pressure Phase in Arsenic and its Relation to Pressure-Induced Phase Changes in Group 5b Elements , 1972 .

[24]  S. Clark,et al.  Compressibility of cubic white, orthorhombic black, rhombohedral black, and simple cubic black phosphorus , 2010 .

[25]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[26]  K. Niizeki,et al.  Electronic Structure of Phosphorus under High Pressure , 2001 .

[27]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[28]  Marco Häser,et al.  Covalent Structures of Phosphorus: A Comprehensive Theoretical Study , 1995 .

[29]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[30]  T. Kikegawa,et al.  An X‐ray diffraction study of lattice compression and phase transition of crystalline phosphorus , 1983 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Jürgen Hafner,et al.  Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. , 2010, The journal of physical chemistry. A.

[33]  D. Schiferl Pseudopotential crystal-structure stability calculations on black phosphorous as a function of pressure , 1979 .

[34]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[35]  S. Sugai,et al.  Raman and infrared reflection spectroscopy in black phosphorus , 1985 .

[36]  N. Christensen,et al.  Phosphorus under pressure: Ba-IV-type structure as a candidate for P-IV , 2004 .

[37]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[38]  M. Alouani,et al.  Calculation of band structure and superconductivity in the simple cubic phase of phosphorus , 1989 .

[39]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[40]  A. Morita,et al.  Lattice Dynamics of Black Phosphorus. I. Valence Force Field Model , 1986 .

[41]  Chang,et al.  Structural stability of phases of black phosphorus. , 1986, Physical review. B, Condensed matter.

[42]  Y. Akahama,et al.  Raman study of black phosphorus up to 13 GPa , 1997 .

[43]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[44]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[45]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[46]  Klein,et al.  Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. , 1990, Physical review. B, Condensed matter.

[47]  Shoichi Endo,et al.  The crystal structure and oriented transformation of black phosphorus under high pressure , 1989 .

[48]  R. Ahuja Calculated high pressure crystal structure transformations for phosphorus , 2003 .

[49]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[50]  Olle Eriksson,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 , 1998 .

[51]  T. Kawamura,et al.  Compression behavior of CdS and BP up to 68 GPa , 1983 .

[52]  Ø. Prytz,et al.  The influence of exact exchange corrections in van der Waals layered narrow bandgap black phosphorus , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[54]  T. G. Worlton,et al.  Effect of pressure on bonding in black phosphorus , 1979 .

[55]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[56]  Y. Kondo,et al.  Infrared Optical Absorption Due to One and Two Phonon Processes in Black Phosphorus , 1983 .

[57]  T. Takahashi,et al.  Band structure of black phosphorus studied by angle-resolved ultraviolet photoemission spectroscopy , 1983 .

[58]  M. Imai,et al.  Phase transitions in black phosphorus at low temperature and high pressure , 1990 .

[59]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[60]  G. Shirane,et al.  Inelastic neutron scattering study of acoustic phonons of black phosphorus , 1982 .

[61]  John P. Perdew,et al.  Exchange-correlation energy of a metallic surface: Wave-vector analysis , 1977 .

[62]  D. King,et al.  Coverage-dependent structural evolution in the interaction of NO2 with Au{111} , 2012 .

[63]  A. Tkatchenko,et al.  Hydrogen bonds and van der waals forces in ice at ambient and high pressures. , 2011, Physical review letters.

[64]  M. Kimura,et al.  Measurement of Ultrasound Velocity in the Single Crystal of Black Phosphorus up to 3.3 GPa Gas Pressure , 1991 .

[65]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[66]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[67]  Yuri Grin,et al.  Squeezing lone pairs: The A17 to A7 pressure-induced phase transition in black phosphorus , 2012 .

[68]  J. C. Jamieson Crystal Structures Adopted by Black Phosphorus at High Pressures , 1963, Science.

[69]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .