for 1 2 T-box transcription factor 3 governs a transcriptional program for the 3 function of the mouse atrioventricular conduction system 4

[1]  M. Nóbrega,et al.  Transcriptional Patterning of the Ventricular Cardiac Conduction System , 2020, Circulation research.

[2]  Matthew C. Hill,et al.  Identification of atrial fibrillation associated genes and functional non-coding variants , 2019, Nature Communications.

[3]  Matthew C. Hill,et al.  Conserved NPPB+ Border Zone Switches from MEF2 to AP-1 Driven Gene Program. , 2019, Circulation.

[4]  M. Tessier-Lavigne,et al.  Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution. , 2019, Circulation research.

[5]  Kathleen F. Kerr,et al.  Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction , 2019, bioRxiv.

[6]  V. Christoffels,et al.  Embryonic Tbx3+ cardiomyocytes form the mature cardiac conduction system by progressive fate restriction , 2018, Development.

[7]  Kathleen F. Kerr,et al.  PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity , 2018, Nature Communications.

[8]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[9]  Peter H. L. Krijger,et al.  Regulation of disease-associated gene expression in the 3D genome , 2016, Nature Reviews Molecular Cell Biology.

[10]  Md. Abul Hassan Samee,et al.  Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis , 2016, Cell.

[11]  O. Bergmann,et al.  No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice , 2015, Cell.

[12]  A. Rosenzweig,et al.  Cardiomyocyte Cell-Cycle Activity during Preadolescence , 2015, Cell.

[13]  R. Backofen,et al.  Deciphering the Epigenetic Code of Cardiac Myocyte Transcription. , 2015, Circulation research.

[14]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[15]  I. Efimov,et al.  Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties , 2015, Circulation research.

[16]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[17]  R. D. de Boer,et al.  Genetic Determinants of P Wave Duration and PR Segment , 2014, Circulation. Cardiovascular genetics.

[18]  M. Gessler,et al.  GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development , 2014, Nature Communications.

[19]  Yong Zhao,et al.  Inducible gene deletion in the entire cardiac conduction system using Hcn4‐CreERT2 BAC transgenic mice , 2014, Genesis.

[20]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[21]  G. Wang,et al.  HCN4 Dynamically Marks the First Heart Field and Conduction System Precursors , 2013, Circulation research.

[22]  M. Buckingham,et al.  Resolving cell lineage contributions to the ventricular conduction system with a Cx40‐GFP allele: A dual contribution of the first and second heart fields , 2013, Developmental dynamics : an official publication of the American Association of Anatomists.

[23]  C. Bezzina,et al.  Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. , 2012, The Journal of clinical investigation.

[24]  M. Nóbrega,et al.  TBX5 drives Scn5a expression to regulate cardiac conduction system function. , 2012, The Journal of clinical investigation.

[25]  N. Munshi Gene Regulatory Networks in Cardiac Conduction System Development , 2012, Circulation research.

[26]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[27]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[28]  R. M. Burr,et al.  Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis , 2011, Proceedings of the National Academy of Sciences.

[29]  A. Moorman,et al.  Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation , 2011, Cellular and Molecular Life Sciences.

[30]  M R Boyett,et al.  Molecular architecture of the human specialised atrioventricular conduction axis. , 2011, Journal of molecular and cellular cardiology.

[31]  A. Moorman,et al.  Defective Tbx2-dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice. , 2011, The Journal of clinical investigation.

[32]  J. Epstein,et al.  Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. , 2011, The Journal of clinical investigation.

[33]  Robert H. Anderson,et al.  Developmental Origin, Growth, and Three-Dimensional Architecture of the Atrioventricular Conduction Axis of the Mouse Heart , 2010, Circulation research.

[34]  G. Breithardt,et al.  Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3 , 2010, Cardiovascular research.

[35]  John McAnally,et al.  Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay , 2009, Development.

[36]  Catherine A. Risebro,et al.  Prox1 maintains muscle structure and growth in the developing heart , 2009, Development.

[37]  Bastiaan J. Boukens,et al.  Transcription Factor Tbx3 Is Required for the Specification of the Atrioventricular Conduction System , 2008, Circulation research.

[38]  J. Shendure,et al.  A Molecular Pathway Including Id2, Tbx5, and Nkx2-5 Required for Cardiac Conduction System Development , 2007, Cell.

[39]  A. Moorman,et al.  Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. , 2007, Genes & development.

[40]  Kazuko Koshiba-Takeuchi,et al.  Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. , 2006, Developmental biology.

[41]  Hee-Sup Shin,et al.  Bradycardia and Slowing of the Atrioventricular Conduction in Mice Lacking CaV3.1/&agr;1G T-Type Calcium Channels , 2006, Circulation research.

[42]  Ming Lei,et al.  Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart , 2005, The Journal of physiology.

[43]  J. Seidman,et al.  The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system , 2004, Development.

[44]  Harold V M van Rijen,et al.  Architectural and functional asymmetry of the His-Purkinje system of the murine heart. , 2004, Cardiovascular research.

[45]  A. Moorman,et al.  The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. , 2004, Cardiovascular research.

[46]  R. P. Thompson,et al.  Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. , 1999, Development.

[47]  Y. Rao,et al.  Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Seidman,et al.  Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome , 1997, Nature Genetics.

[49]  L. W. Eichna,et al.  Differentiation of the Atrioventricular Conducting System of the Heart , 1961, Circulation.

[50]  A. Peters,et al.  Genetic Loci Influencing Myocardial Mass , 2017 .