Meta-learning Recommendation of Default Hyper-parameter Values for SVMs in Classification Tasks
暂无分享,去创建一个
André Carlos Ponce de Leon Ferreira de Carvalho | Rafael Gomes Mantovani | André Luis Debiaso Rossi | Joaquin Vanschoren | J. Vanschoren | A. Carvalho | R. Mantovani | A. L. Rossi
[1] James Kennedy. Particle Swarms: Optimization Based on Sociocognition , 2005 .
[2] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Combining meta-learning and search techniques to select parameters for support vector machines , 2012, Neurocomputing.
[3] Chih-Jen Lin,et al. A Practical Guide to Support Vector Classication , 2008 .
[4] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[5] Luís Torgo,et al. OpenML: networked science in machine learning , 2014, SKDD.
[6] Andreas Dengel,et al. Automatic classifier selection for non-experts , 2012, Pattern Analysis and Applications.
[7] Christian Igel,et al. Evolutionary tuning of multiple SVM parameters , 2005, ESANN.
[8] Andreas Dengel,et al. Meta-learning for evolutionary parameter optimization of classifiers , 2012, Machine Learning.
[9] Sigrún Andradóttir,et al. A Review of Random Search Methods , 2015 .
[10] Michèle Sebag,et al. Collaborative hyperparameter tuning , 2013, ICML.
[11] A. E. Eiben,et al. Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.
[12] David D. Cox,et al. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures , 2013, ICML.
[13] Sayan Mukherjee,et al. Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.
[14] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Bio-inspired Optimization Techniques for SVM Parameter Tuning , 2008, 2008 10th Brazilian Symposium on Neural Networks.
[15] Bernd Bischl,et al. Tuning and evolution of support vector kernels , 2012, Evol. Intell..
[16] Kevin Leyton-Brown,et al. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.
[17] M. C. Monard,et al. A Note on Parameter Selection for Support Vector Machines , 2013, MICAI.
[18] Frank Hutter,et al. Initializing Bayesian Hyperparameter Optimization via Meta-Learning , 2015, AAAI.
[19] Ricardo Vilalta,et al. Metalearning - Applications to Data Mining , 2008, Cognitive Technologies.
[20] Bernd Bischl,et al. To tune or not to tune: Recommending when to adjust SVM hyper-parameters via meta-learning , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).
[21] B. Lang,et al. Efficient optimization of support vector machine learning parameters for unbalanced datasets , 2006 .
[22] Carlos Soares,et al. A Meta-Learning Method to Select the Kernel Width in Support Vector Regression , 2004, Machine Learning.
[23] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Noisy Data Set Identification , 2013, HAIS.
[24] Yoshua Bengio,et al. Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..
[25] Thomas Stützle,et al. Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.
[26] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.