DCAP: Improving the Capacity of WiFi Networks with Distributed Cooperative Access Points

This paper presents the Distributed Cooperative Access Points (DCAP) system that can simultaneously serve multiple clients using <italic>cooperative beamforming</italic> to increase the capacity of WiFi-type wireless networks. The distributed APs are connected by Ethernet and driven by independent low-cost local oscillators. To facilitate cooperative beamforming, we address three major challenges: the phase synchronization, the channel state information (CSI) measurement, and the user selection. Specifically, we develop 1) a cooperative tracking scheme to track signal phase drifts at symbol level without adding extra hardware complexity; 2) an incremental CSI estimation mechanism that removes the per-frame CSI measurement overhead of previous approaches; and 3) a simple random user selection algorithm that scales the network capacity linearly and delivers over <inline-formula><tex-math notation="LaTeX">$70$</tex-math> <alternatives><inline-graphic xlink:href="yang-ieq1-2709743.gif"/></alternatives></inline-formula> percent performance compared to the optimal but complex greedy algorithm. We implement DCAP on the Sora software radio platform and evaluate it in a wireless network with nine nodes. Experimental results show that the cooperative beamforming is feasible in practice, and our cooperative phase tracking can ensure strict phase alignment (<inline-formula> <tex-math notation="LaTeX">$\leq$</tex-math><alternatives><inline-graphic xlink:href="yang-ieq2-2709743.gif"/> </alternatives></inline-formula> 0.03 radian) among APs during the entire beamforming period (1.2 ms). Otherwise, without tracking, phases may drift by 0.3 radian over merely 600 <inline-formula><tex-math notation="LaTeX">$\mu$ </tex-math><alternatives><inline-graphic xlink:href="yang-ieq3-2709743.gif"/></alternatives></inline-formula>s, causing that the symbol SNR decreases as large as 20 dB.

[1]  Raymond Knopp,et al.  A practical method for wireless channel reciprocity exploitation through relative calibration , 2005, Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005..

[2]  N.D. Sidiropoulos,et al.  On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm , 2005, IEEE Transactions on Signal Processing.

[3]  Qing Yang,et al.  BigStation: enabling scalable real-time signal processingin large mu-mimo systems , 2013, SIGCOMM.

[4]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[5]  Wei Wang,et al.  SAM: enabling practical spatial multiple access in wireless LAN , 2009, MobiCom '09.

[6]  Giuseppe Caire,et al.  Achieving high data rates in a distributed MIMO system , 2012, Mobicom '12.

[7]  Kang G. Shin,et al.  NEMOx: scalable network MIMO for wireless networks , 2013, MobiCom.

[8]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[9]  Bertrand M. Hochwald,et al.  Space-Time Multiple Access: Linear Growth in the Sum Rate , 2002 .

[10]  Andrea J. Goldsmith,et al.  On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming , 2006, IEEE Journal on Selected Areas in Communications.

[11]  Jing Zhu,et al.  Adapting physical carrier sensing to maximize spatial reuse in 802.11 mesh networks , 2004, Wirel. Commun. Mob. Comput..

[12]  Thomas L. Marzetta,et al.  Argos: practical many-antenna base stations , 2012, Mobicom '12.

[13]  Raghuraman Mudumbai,et al.  A Scalable Architecture for Distributed Transmit Beamforming with Commodity Radios: Design and Proof of Concept , 2013, IEEE Transactions on Wireless Communications.

[14]  Jiansong Zhang,et al.  Fine-Grained Channel Access in Wireless LAN , 2013, IEEE/ACM Transactions on Networking.

[15]  Vivek Yenamandra,et al.  Vidyut: exploiting power line infrastructure for enterprise wireless networks , 2015, SIGCOMM 2015.

[16]  Giuseppe Caire,et al.  Scalable Synchronization and Reciprocity Calibration for Distributed Multiuser MIMO , 2013, IEEE Transactions on Wireless Communications.

[17]  Swarun Kumar,et al.  JMB: scaling wireless capacity with user demands , 2012, SIGCOMM '12.

[18]  Michael D. Zoltowski,et al.  User Selection With Zero-Forcing Beamforming Achieves the Asymptotically Optimal Sum Rate , 2008, IEEE Transactions on Signal Processing.

[19]  Giuseppe Caire,et al.  AirSync: Enabling Distributed Multiuser MIMO With Full Spatial Multiplexing , 2012, IEEE/ACM Transactions on Networking.

[20]  Haitao Wu,et al.  Sora: High Performance Software Radio Using General Purpose Multi-core Processors , 2009, NSDI.

[21]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[22]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[23]  Robert W. Heath,et al.  Shifting the MIMO Paradigm , 2007, IEEE Signal Processing Magazine.

[24]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[25]  Ming-Syan Chen,et al.  Rate Adaptation for 802.11 Multiuser MIMO Networks , 2014, IEEE Trans. Mob. Comput..

[26]  Dirk Grunwald,et al.  SMACK: a SMart ACKnowledgment scheme for broadcast messages in wireless networks , 2009, SIGCOMM '09.

[27]  Edward W. Knightly,et al.  Design and experimental evaluation of multi-user beamforming in wireless LANs , 2010, MobiCom.

[28]  Martin Haardt,et al.  An introduction to the multi-user MIMO downlink , 2004, IEEE Communications Magazine.

[29]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.