Wavelets on ultrametric spaces

[1]  B A Huberman,et al.  Ultradiffusion: the relaxation of hierarchical systems , 1985 .

[2]  Ogielski,et al.  Dynamics on ultrametric spaces. , 1985, Physical review letters.

[3]  Long range diffusion in ultrametric spaces , 1985 .

[4]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[5]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[6]  Igor Volovich,et al.  p-adic string , 1987 .

[7]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[8]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[9]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[10]  V. S. Vladimirov,et al.  P-adic analysis and mathematical physics , 1994 .

[11]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[12]  Replica Fourier Transforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices , 1997, cond-mat/9703132.

[13]  On the Replica Fourier Transform , 1997, cond-mat/9709200.

[14]  Fundamental solutions of pseudodifferential equations connected with $ p$-adic quadratic forms , 1998 .

[15]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[16]  G. Parisi,et al.  P-adic numbers and replica symmetry breaking , 1999, cond-mat/9906095.

[17]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[18]  On the wavelet transform in the field Qp of p-adic numbers , 2002 .

[19]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[20]  J. Benedetto,et al.  A wavelet theory for local fields and related groups , 2003, math/0312036.

[21]  Robert L. Benedetto Examples of wavelets for local fields , 2003 .

[22]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .