Bottleneck Bichromatic Non-crossing Matchings using Orbits

Let $R$ and $B$ be sets of $n$ red and $n$ blue points in the plane, respectively, with $P = R \cup B$. Let $M$ be a perfect matching between points from $R$ and $B$, using $n$ straight line segments to match the points, that is, each point is an endpoint of exactly one line segment, and each line segment has one red and one blue endpoint. We forbid line segments to cross. Denote the length of a longest line segment in $M$ with $bn(M)$, which we also call the \intro[~]{value, bn} of $M$. We aim to find a matching under given constraints that minimizes $bn(M)$. Any such matching is called a \intro[~]{bottleneck matching} of $P$.

[1]  Joseph S. B. Mitchell,et al.  Matching regions in the plane using non-crossing segments , 2015 .

[2]  David R. Wood,et al.  Edge-Removal and Non-Crossing Configurations in Geometric Graphs , 2010, Discret. Math. Theor. Comput. Sci..

[3]  Sujoy Bhore,et al.  Monochromatic Plane Matchings in Bicolored Point Set , 2017, CCCG.

[4]  Chuan Yi Tang,et al.  Solving the Euclidean bottleneck matching problem byk-relative neighborhood graphs , 2005, Algorithmica.

[5]  Paz Carmi,et al.  Approximating the bottleneck plane perfect matching of a point set , 2013, Comput. Geom..

[6]  Matthew J. Katz,et al.  Computing Euclidean bottleneck matchings in higher dimensions , 2000, Inf. Process. Lett..

[7]  Miloš Stojaković,et al.  Faster bottleneck non-crossing matchings of points in convex position , 2017, Comput. Geom..

[8]  Saladi Rahul,et al.  A Bottleneck Matching Problem with Edge-Crossing Constraints , 2015, Int. J. Comput. Geom. Appl..

[9]  Matthew J. Katz,et al.  Bottleneck non-crossing matching in the plane , 2012, Comput. Geom..

[10]  Jean Cardinal,et al.  Non-crossing matchings of points with geometric objects , 2013, Comput. Geom..

[11]  Alon Itai,et al.  Geometry Helps in Bottleneck Matching and Related Problems , 2001, Algorithmica.

[12]  Sergey Bereg,et al.  Compatible geometric matchings , 2007, Comput. Geom..

[13]  Jan Kratochvíl,et al.  Non-crossing Connectors in the Plane , 2012, TAMC.

[14]  Michiel H. M. Smid,et al.  Bottleneck Bichromatic Plane Matching of Points , 2014, CCCG.