Spermbots: Concept and Applications

[1]  Filippo Saglimbeni,et al.  Light controlled 3D micromotors powered by bacteria , 2017, Nature Communications.

[2]  M. Medina‐Sánchez,et al.  Spermatozoa as Functional Components of Robotic Microswimmers , 2017, Advanced materials.

[3]  Mariana Medina-Sánchez,et al.  Medical microbots need better imaging and control , 2017, Nature.

[4]  O. Schmidt,et al.  Sperm-hybrid micromotor for drug delivery in the female reproductive tract , 2017, 1703.08510.

[5]  Daniela A Wilson,et al.  Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery , 2017, ACS nano.

[6]  Fernando Soto,et al.  Transient Micromotors That Disappear When No Longer Needed. , 2016, ACS nano.

[7]  M. Brust,et al.  Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells in Vivo. , 2016, ACS nano.

[8]  Oliver G. Schmidt,et al.  Dynamic Polymeric Microtubes for the Remote‐Controlled Capture, Guidance, and Release of Sperm Cells , 2016, Advanced materials.

[9]  Vasilis Ntziachristos,et al.  Lymph Node Micrometastases and In-Transit Metastases from Melanoma: In Vivo Detection with Multispectral Optoacoustic Imaging in a Mouse Model. , 2016, Radiology.

[10]  Oliver G Schmidt,et al.  Medibots: Dual‐Action Biogenic Microdaggers for Single‐Cell Surgery and Drug Release , 2016, Advanced materials.

[11]  Oliver G Schmidt,et al.  Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. , 2016, Nano letters.

[12]  Jiang Zhuang,et al.  pH-Taxis of Biohybrid Microsystems , 2015, Scientific Reports.

[13]  I. Imoto,et al.  An association study of four candidate loci for human male fertility traits with male infertility. , 2015, Human reproduction.

[14]  Oliver G. Schmidt,et al.  How to Improve Spermbot Performance , 2015 .

[15]  Liangfang Zhang,et al.  Artificial Micromotors in the Mouse’s Stomach: A Step toward in Vivo Use of Synthetic Motors , 2014, ACS nano.

[16]  P. Lambin,et al.  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.

[17]  Oliver G. Schmidt,et al.  Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot , 2014 .

[18]  S. Misra,et al.  MagnetoSperm: A microrobot that navigates using weak magnetic fields , 2014 .

[19]  Wei Wang,et al.  Acoustic propulsion of nanorod motors inside living cells. , 2014, Angewandte Chemie.

[20]  B. Williams,et al.  A self-propelled biohybrid swimmer at low Reynolds number , 2014, Nature Communications.

[21]  Xiaomiao Feng,et al.  Bioinspired helical microswimmers based on vascular plants. , 2014, Nano letters.

[22]  Oliver G. Schmidt,et al.  Development of a Sperm‐Flagella Driven Micro‐Bio‐Robot , 2013, Advanced materials.

[23]  Doreen Steed,et al.  Dedicated 3D photoacoustic breast imaging. , 2013, Medical physics.

[24]  Islam S. M. Khalil,et al.  Three-dimensional closed-loop control of self-propelled microjets , 2013 .

[25]  M. Sitti,et al.  Chemotactic steering of bacteria propelled microbeads , 2012, Biomedical Microdevices.

[26]  Sylvain Martel,et al.  Bacterial microsystems and microrobots , 2012, Biomedical Microdevices.

[27]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[28]  W. Xi,et al.  Self-propelled nanotools. , 2012, ACS nano.

[29]  Metin Sitti,et al.  Micro-scale propulsion using multiple flexible artificial flagella , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Alexander Kuhn,et al.  Electric field-induced chemical locomotion of conducting objects. , 2011, Nature communications.

[31]  Samuel Sanchez,et al.  Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. , 2011, Nano letters.

[32]  Martin Pumera,et al.  Enhanced diffusion of pollutants by self-propulsion. , 2011, Physical chemistry chemical physics : PCCP.

[33]  S. Martel,et al.  Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. , 2011, Biomaterials.

[34]  Susana Campuzano,et al.  Micromachine-enabled capture and isolation of cancer cells in complex media. , 2011, Angewandte Chemie.

[35]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[36]  George J. Pappas,et al.  Electrokinetic and optical control of bacterial microrobots , 2011 .

[37]  R Di Leonardo,et al.  Bacterial ratchet motors , 2009, Proceedings of the National Academy of Sciences.

[38]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[39]  Sylvain Martel,et al.  Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature , 2009, Int. J. Robotics Res..

[40]  S. Martel,et al.  Controlled manipulation and actuation of micro-objects with magnetotactic bacteria , 2006 .

[41]  J. Xi,et al.  Self-assembled microdevices driven by muscle , 2005, Nature materials.

[42]  H. Berg,et al.  Moving fluid with bacterial carpets. , 2004, Biophysical journal.

[43]  L. Zaneveld,et al.  Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. , 1984, Journal of reproduction and fertility.