Scheduling time-dependent jobs under mixed deterioration

We consider a new model of time-dependent scheduling. A set of deteriorating jobs has to be processed on a single machine which is available starting from a non-zero time. The processing times of some jobs from this set are constant, while other ones are either proportional or linear functions of the job starting times. The applied criteria of schedule optimality include the maximum completion time, the total completion time, the total weighted completion time, the maximum lateness and the number of tardy jobs. We delineate a sharp boundary between computationally easy and difficult problems, showing polynomially solvable and NP-hard cases.

[1]  Stanislaw Gawiejnowicz,et al.  Analysis of a time-dependent scheduling problem by signatures of deterioration rate sequences , 2006, Discret. Appl. Math..

[2]  Stanislaw Gawiejnowicz,et al.  Time-Dependent Scheduling , 2008, Monographs in Theoretical Computer Science. An EATCS Series.

[3]  Anand S. Kunnathur,et al.  Optimal repayment policies for multiple loans , 1987 .

[4]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[5]  Stanislaw Gawiejnowicz,et al.  Scheduling Jobs with Varying Processing Times , 1995, Inf. Process. Lett..

[6]  Gur Mosheiov,et al.  Scheduling jobs with step-deterioration; minimizing makespan on a single- and multi-machine , 1995 .

[7]  John G. Rau Technical Note - Minimizing a Function of Permutations of n Integers , 1971, Oper. Res..

[8]  Xiaohong Li,et al.  Single-machine scheduling time-dependent jobs with resource-dependent ready times , 2010, Comput. Ind. Eng..

[9]  Alexander V. Kononov,et al.  Scheduling Problems with Linear Increasing Processing Times , 1997 .

[10]  V. Tanaev,et al.  Scheduling theory single-stage systems , 1994 .

[11]  Ji-Bo Wang,et al.  Single-machine group scheduling with linearly decreasing time-dependent setup times and job processing times , 2010 .

[12]  Adam Janiak,et al.  Minimizing maximum lateness under linear deterioration , 2000, Eur. J. Oper. Res..

[13]  Stanislaw Gawiejnowicz,et al.  Equivalent time-dependent scheduling problems , 2009, Eur. J. Oper. Res..

[14]  Christopher D. Geiger,et al.  A note on the optimal sequence position for a rate-modifying activity under simple linear deterioration , 2010, Eur. J. Oper. Res..

[15]  Chuan-li Zhao,et al.  Single machine scheduling problems with deteriorating jobs , 2005, Appl. Math. Comput..

[16]  T. C. Edwin Cheng,et al.  A branch-and-bound algorithm for solving a two-machine flow shop problem with deteriorating jobs , 2010, Comput. Oper. Res..

[17]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[18]  Bahram Alidaee,et al.  Scheduling with time dependent processing times: Review and extensions , 1999, J. Oper. Res. Soc..

[19]  Chin-Chia Wu,et al.  A two-machine flowshop scheduling problem with deteriorating jobs and blocking , 2010 .

[20]  Gur Mosheiov,et al.  Scheduling jobs under simple linear deterioration , 1994, Comput. Oper. Res..

[21]  Joseph Y.-T. Leung,et al.  Complexity of Scheduling Tasks with Time-Dependent Execution Times , 1993, Inf. Process. Lett..

[22]  Bertrand M. T. Lin,et al.  A concise survey of scheduling with time-dependent processing times , 2004, Eur. J. Oper. Res..

[23]  Yu-Hsiang Chung,et al.  A deteriorating jobs problem with quadratic function of job lateness , 2009, Comput. Ind. Eng..

[24]  Stanislaw Gawiejnowicz,et al.  Conjugate problems in time-dependent scheduling , 2009, J. Sched..

[25]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[26]  T. C. Edwin Cheng,et al.  Batch scheduling of step deteriorating jobs , 2008, J. Sched..

[27]  Alexander V. Kononov,et al.  Complexity and approximability of scheduling resumable proportionally deteriorating jobs , 2010, Eur. J. Oper. Res..

[28]  Chuanli Zhao,et al.  Rescheduling problems with deteriorating jobs under disruptions , 2010 .

[29]  Adam Janiak,et al.  Minimizing the total weighted completion time of deteriorating jobs , 2002, Inf. Process. Lett..

[30]  Jinjiang Yuan,et al.  Single machine parallel-batch scheduling with deteriorating jobs , 2009, Theor. Comput. Sci..