Heteronuclear decoupling in rotating solids

A simple two pulse phase modulation (TPPM) scheme greatly reduces the residual linewidths arising from insufficient proton decoupling power in double resonance magic angle spinning (MAS) experiments. Optimization of pulse lengths and phases in the sequence produces substantial improvements in both the resolution and sensitivity of dilute spins (e.g., 13C) over a broad range of spinning speeds at high magnetic field. The theoretical complications introduced by large homo‐ and heteronuclear interactions among the spins, as well as the amplitude modulation imposed by MAS, are explored analytically and numerically. To our knowledge, this method is the first phase‐switched sequence to exhibit improvement over continuous‐wave (cw) decoupling in a strongly coupled homogeneous spin system undergoing sample spinning.

[1]  H. Sauter,et al.  13C shift anisotropies in polycrystalline calcium formate , 1983 .

[2]  A. J. Shaka,et al.  Broadband spin decoupling in isotropic-liquids , 1987 .

[3]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[4]  E. Stejskal,et al.  Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle , 1976 .

[5]  J. Grutzner,et al.  Coherent broad-band decoupling—An alternative to proton noise decoupling in carbon-13 nuclear magnetic resonance spectroscopy , 1975 .

[6]  Ray Freeman,et al.  Influence of a Second Radiofrequency Field on High‐Resolution Nuclear Magnetic Resonance Spectra , 1962 .

[7]  D. Canet,et al.  Effect of Proton Spin Exchange on the Residual 13C MAS NMR Linewidths. Phase-Modulated Irradiation for Efficient Heteronuclear Decoupling in Rapidly Rotating Solids , 1994 .

[8]  R. Freeman,et al.  Composite pulse decoupling , 1981 .

[9]  T. Pratum Correction for anisotropic off-resonance decoupling effects in CPMAS of moderate susceptibility materials , 1990 .

[10]  D. Suter,et al.  Theory of broadband heteronuclear decoupling in multispin systems , 1987 .

[11]  A. N. Garroway,et al.  13C n.m.r. in organic solids: limits to spectral resolution and to determination of molecular motion , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  T. Fujiwara,et al.  Frequency-Switched Composite Pulses for Decoupling Carbon-13 Spins over Ultrabroad Bandwidths , 1993 .

[13]  D. Suter,et al.  Broadband heteronuclear decoupling in the presence of homonuclear dipolar and quadrupolar interactions , 1987 .

[14]  T. Pratum Composite decoupling in CPMAS of moderate-susceptibility materials , 1990 .

[15]  Michael Mehring,et al.  Principles of high-resolution NMR in solids , 1982 .

[16]  W. A. Anderson,et al.  Removal of Residual Splitting in Nuclear Magnetic Double Resonance , 1963 .

[17]  John S. Waugh,et al.  Theory of broadband spin decoupling , 1982 .

[18]  E. Olejniczak,et al.  Multiple pulse NMR in rotating solids. , 1984 .

[19]  J. H. Lee,et al.  Broadband heteronuclear spin decoupling in solids , 1988 .

[20]  T. Nakai,et al.  Spinning-frequency-dependent linewidths in 1H-decoupled 13C magic-angle spinning NMR spectra , 1994 .

[21]  T. Oas,et al.  Rotary resonance recoupling of dipolar interactions in solid‐state nuclear magnetic resonance spectroscopy , 1988 .

[22]  A. J. Shaka,et al.  An improved sequence for broadband decoupling: WALTZ-16 , 1983 .

[23]  A. Pines,et al.  Dynamics of spin decoupling in carbon-13—proton NMR , 1976 .

[24]  E. R. Andrew,et al.  Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed , 1958, Nature.

[25]  A. N. Garroway,et al.  Resolution in 13C NMR of organic solids using high-power proton decoupling and magic-angle sample spinning , 1981 .