A novel clustering method for examining and analyzing the intellectual structure of a scholarly field

Recently there are many bibliometric studies attempting to utilize Pathfinder networks(PFNets) for examining and analyzing the intellectual structure of a scholarly field. Pathfinder network scaling has many advantages over traditional multidimensional scaling, including its ability to represent local details as well as global intellectual structure. However there are some limitations in PFNets including very high time complexity. And Pathfinder network scaling cannot be combined with cluster analysis, which has been combined well with traditional multidimensional scaling method. In this paper, a new method named as Parallel Nearest Neighbor Clustering (PNNC) are proposed for complementing those weak points of PFNets. Comparing the clustering performance with traditional hierarchical agglomerative clustering methods shows that PNNC is not only a complement to PFNets but also a fast and powerful clustering method for organizing informations.