Trip purpose inference using automated fare collection data

In this paper, we exploit the extensive smart card transaction data for deriving useful information about transit passenger behavior, namely trip purpose or activity. We show how the automated fare collection data (e.g., smart card) can be used to infer trip purpose and to reveal travel patterns in an urban area. A case study demonstrates the process of trip purpose inference based on smart card data from Metro Transit in the Minneapolis/St. Paul metropolitan area.

[1]  Baibing Li Markov models for Bayesian analysis about transit route origin-destination matrices , 2009 .

[2]  Ka Kee Alfred Chu,et al.  Enriching Archived Smart Card Transaction Data for Transit Demand Modeling , 2008 .

[3]  Howard Slavin,et al.  Use of Entry-Only Automatic Fare Collection Data to Estimate Linked Transit Trips in New York City , 2009 .

[4]  Nigel H. M. Wilson,et al.  Analyzing Multimodal Public Transport Journeys in London with Smart Card Fare Payment Data , 2009 .

[5]  Mark Hickman,et al.  Transit Stop-Level Origin–Destination Estimation through Use of Transit Schedule and Automated Data Collection System , 2011 .

[6]  Peter R. Stopher,et al.  Search for a global positioning system device to measure person travel , 2008 .

[7]  R. Kitamura,et al.  Traveler Destination Choice Behavior: Effects of Time of Day, Activity Duration, and Home Location , 1998 .

[8]  Adam Rahbee,et al.  Origin and Destination Estimation in New York City with Automated Fare System Data , 2002 .

[9]  Bruno Agard,et al.  Measuring transit use variability with smart-card data , 2007 .

[10]  Kees Maat,et al.  Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: A large-scale application in the Netherlands , 2009 .

[11]  Nigel H. M. Wilson,et al.  Potential Uses of Transit Smart Card Registration and Transaction Data to Improve Transit Planning , 2006 .

[12]  Jean Louise Wolf,et al.  Using GPS data loggers to replace travel diaries in the collection of travel data , 2000 .

[13]  Bruno Agard,et al.  Analysing the Variability of Transit Users Behaviour with Smart Card Data , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[14]  Wei Wang,et al.  Bus Passenger Origin-Destination Estimation and Related Analyses , 2011 .

[15]  Daoqin Tong,et al.  Development of a temporal and spatial linkage between transit demand and land-use patterns , 2013 .

[16]  Daoqin Tong,et al.  Stop Aggregation Model , 2012 .

[17]  Liam McNamara,et al.  Media sharing based on colocation prediction in urban transport , 2008, MobiCom '08.

[18]  Alex Lu,et al.  Entry-Only Automated Fare-Collection System Data Used to Infer Ridership, Rider Destinations, Unlinked Trips, and Passenger Miles , 2009 .

[19]  Liang Liu,et al.  Understanding individual and collective mobility patterns from smart card records: A case study in Shenzhen , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[20]  Sang Gu Lee,et al.  Travel Pattern Analysis Using Smart Card Data of Regular Users , 2011 .

[21]  Peter White,et al.  The Potential of Public Transport Smart Card Data , 2005 .

[22]  Paul Waddell,et al.  Residential property values in a multinodal urban area: New evidence on the implicit price of location , 1993 .

[23]  Bruno Agard Mining Smart Card Data from an Urban Transit Network , 2009, Encyclopedia of Data Warehousing and Mining.

[24]  Wei Wang,et al.  Study of Bus Passenger Origin-Destination and Travel Behavior Using Automated Data Collection Systems in London , 2011 .

[25]  Catherine Morency,et al.  Enhancing Household Travel Surveys Using Smart Card Data , 2009 .

[26]  Jinhua Zhao,et al.  Estimating a Rail Passenger Trip Origin‐Destination Matrix Using Automatic Data Collection Systems , 2007, Comput. Aided Civ. Infrastructure Eng..

[27]  Janine M Farzin Constructing an Automated Bus Origin–Destination Matrix Using Farecard and Global Positioning System Data in São Paulo, Brazil , 2008 .

[28]  Bruno Agard,et al.  MINING PUBLIC TRANSPORT USER BEHAVIOUR FROM SMART CARD DATA , 2006 .

[29]  G. Wets,et al.  Destination Choice in Daily Activity Travel , 2008 .

[30]  Martin Trépanier,et al.  Individual Trip Destination Estimation in a Transit Smart Card Automated Fare Collection System , 2007, J. Intell. Transp. Syst..

[31]  Harry W. Richardson,et al.  What Happened to the CBD-Distance Gradient?: Land Values in a Policentric City , 1989 .

[32]  P. Dempsey Privacy Issues with the Use of Smart Cards , 2015 .

[33]  Catherine Morency,et al.  Smart card data use in public transit: A literature review , 2011 .