Syntheses of LiCoO2 Mesocrystals by Topotactic Transformation and Their Electrochemical Properties.

Synthetic routes for LiCoO2 mesocrystals with porous and single-crystalline structures through the topotactic transformation of precursor crystals are developed. Octahedral LiCoO2 frameworks of 4-6 μm in diameter, consisting of 600-800 nm subunits, are obtained from octahedral solid particles of Co2 (OH)3 Cl. Hollow LiCoO2 plates about 600 nm wide and 40 nm thick composed of 100-400 nm subunits are produced from hexagonal disks of β-Co(OH)2 . The LiCoO2 mesocrystals exhibit enhanced charge-discharge cycle stability and rate performance as a cathode material for lithium-ion batteries. The high reactive surface area, owing to the porous framework, and high lithium-ion and electron conductivities, originating from the single-crystalline nature, effectively enhance their electrochemical properties.

[1]  Haoshen Zhou,et al.  Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO₃. , 2013, Nanoscale.

[2]  Xiangming He,et al.  LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries , 2012, Nano Research.

[3]  Haoshen Zhou,et al.  Electrospinning Synthesis of Wire-Structured LiCoO2 for Electrode Materials of High-Power Li-Ion Batteries , 2012 .

[4]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[5]  X. Lou,et al.  LiNi(0.5)Mn(1.5)O4 hollow structures as high-performance cathodes for lithium-ion batteries. , 2012, Angewandte Chemie.

[6]  Xiangming He,et al.  Shape control of CoO and LiCoO2 nanocrystals , 2010 .

[7]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[8]  G. Ceder,et al.  Tailoring the Morphology of LiCoO2: A First Principles Study , 2009 .

[9]  L. Archer,et al.  Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties , 2008 .

[10]  H. Imai,et al.  Matrix-mediated formation of hierarchically structured SnO crystals as intermediates between single crystals and polycrystalline aggregates. , 2008, Langmuir.

[11]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[12]  Bruno Scrosati,et al.  Nanomaterialien für wiederaufladbare Lithiumbatterien , 2008 .

[13]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[14]  L. Archer,et al.  Self‐Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium‐Ion Battery Electrodes , 2008 .

[15]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[16]  Yuya Oaki,et al.  Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale , 2006 .

[17]  Feng Jiao,et al.  Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. , 2005, Angewandte Chemie.

[18]  M. Osada,et al.  Selective and Controlled Synthesis of α- and β-Cobalt Hydroxides in Highly Developed Hexagonal Platelets , 2005 .

[19]  Markus Antonietti,et al.  Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. , 2005, Angewandte Chemie.

[20]  Helmut Cölfen,et al.  Mesokristalle: anorganische Überstrukturen durch hochparallele Kristallisation und kontrollierte Ausrichtung , 2005 .

[21]  Helmut Cölfen,et al.  Geordnete mesoskopische Strukturen durch Selbstorganisation und Transformation von Hybrid-Nanostrukturen , 2003 .

[22]  Stephen Mann,et al.  Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. , 2003, Angewandte Chemie.

[23]  Yang Shao-Horn,et al.  Atomic resolution of lithium ions in LiCoO2 , 2003, Nature materials.

[24]  S. Chang,et al.  Syntheses of LiCoO2 for cathode materials of secondary batteries from reflux reactions at 130-200 °C , 2002 .

[25]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[26]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[27]  H. Lutz,et al.  Crystal structure of brucite-type cobalt hydroxide β-Co{O(H,D)}2 — neutron diffraction, IR and Raman spectroscopy , 1998 .

[28]  W. Wynne-Jones,et al.  The cobalt hydroxide electrode—I. Structure and phase transitions of the hydroxides☆ , 1964 .

[29]  P. M. D. Wolff The crystal structure of Co2(OH)3Cl , 1953 .

[30]  Hu Zhao,et al.  Facile synthesis of LiCoO2 nanowires with high electrochemical performance , 2011, Nano Research.

[31]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[32]  M. Antonietti,et al.  Polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructures. , 2005, Chemistry.