Magnesium Versus Zinc Coordination to Multidentate Schiff Base Ligands

The reactions of two mononuclear zinc complexes, [Zn(HL1)(H2O)2], 1, and [ZnL4(H2O)], 7, (H3L1 = Schiff base derived from 3-formylsalicylic acid and glycine, H2L4 = Schiff base derived from 2,6-diformyl-4-methylphenol and 1,2-diaminoethane), with Mg2+ has been studied. These complexes contain binucleating Schiff base ligands and have vacant coordination sites. For both compounds, substitution of zinc by magnesium has been observed in DMSO. Likewise, the Zn complex of H2L2 (Schiff base derived from salicylaldehyde and glycine) can be converted into the corresponding Mg compound. The following complexes were characterized by single-crystal X-ray analysis: [MgL3(H2O)3], 4, [MgL2(H2O)2]n, 5, [Mg(sal)2(H2O)2], 6, and [MgL4(H2O)(CH3OH)], 8 (H2L3 = Schiff base derived from 5-bromosalicylaldehyde and glycine, Hsal = salicylaldehyde). The tri- and tetradentate N,O ligands H2L3 and H2L4 form discrete complex molecules in the solid state, while a carboxylate-bridged polymeric structure is formed by H2L2. In 4 and 8 the aqua ligands hydrogen bond with the deprotonated phenolate and carboxylate oxygen atoms, resulting in the formation of dimers. In 6 two aqua ligands, two phenolate oxygens and two aldehyde oxygens give rise to an O6 coordination sphere.

[1]  A. Erxleben Mono- and dinuclear zinc complexes derived from unsymmetric binucleating ligands: synthesis, characterization, and formation of tetranuclear arrays. , 2001, Inorganic chemistry.

[2]  A. Erxleben Synthesis and structure of a helical coordination polymer: ([Zn2(bdaip)(mu-OH)(OH)]NO3.2H2O) infinity (Hbdaip. = 2,6-bis(N-[2-(dimethylamino)ethyl]iminomethyl)-4-methylphenol). , 2001, Inorganic chemistry.

[3]  A. Erxleben,et al.  Synthesis, crystal structure and solution behavior of a novel tetranuclear Zn(II) Schiff base complex , 2000 .

[4]  A. Erxleben,et al.  Di- and poly-nuclear zinc(II) Schiff base complexes: synthesis, structural studies and reaction with an α-amino acid ester , 2000 .

[5]  F. Marchetti,et al.  Spectrophotometric Study of the Equilibria between Nickel(II) Schiff-Base Complexes and Alkaline Earth or Nickel(II) Cations in Acetonitrile Solution. , 1999, Inorganic chemistry.

[6]  C. Lim,et al.  Competitive Binding in Magnesium Coordination Chemistry: Water versus Ligands of Biological Interest , 1999 .

[7]  R. Boča,et al.  Kinetics and Mechanism of Metal Substitution and the Irving-Williams Series: Anion-Catalyzed Substitution of Nickel for Copper in Cu(amben) [=(N,N'-Ethylenebis(2-aminobenzaldiminato))copper(II)]. , 1998, Inorganic chemistry.

[8]  Ian D. Williams,et al.  The first two aqua-bridged dimagnesium(II) complexes: structural models for active sites in dimetallic hydrolases , 1998 .

[9]  F. Meyer,et al.  An intramolecular H3O2 bridge as the resting form of an active metal-bound hydroxide in a dinuclear zinc(II) complex , 1998 .

[10]  H. Sakiyama,et al.  Dinuclear complexes of MnII, CoII and ZnII triply bridged by carboxylate groups: structures, properties and catalase-like function‡ , 1997 .

[11]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[12]  P. Ghosh,et al.  Synthesis and Structure of a Magnesium Hydroxide Complex Supported by Tris(pyrazolyl)hydroborato Ligation, {[TpAr,Me]Mg(μ-OH)}2 (Ar = p-ButC6H4) , 1996 .

[13]  S. Lippard,et al.  Carboxylate- and Phosphate Ester-Bridged Dimagnesium(II), Dizinc(II), and Dicalcium(II) Complexes. Models for Intermediates in Biological Phosphate Ester Hydrolysis , 1996 .

[14]  H. Adams,et al.  Zinc(II) complexes of tripodal ligands providing phenolate and pyridine donors: formation, structure and hydrolytic activity , 1996 .

[15]  A. Sherry,et al.  Formation and Dissociation Kinetics of the Magnesium(II) Complex of 1,4,7-Triazacyclononane-1,4,7-tris(methylenemethylphosphinic acid) , 1996 .

[16]  T. Koike,et al.  PHOSPHODIESTER HYDROLYSIS BY A NEW ZINC(II) MACROCYCLIC TETRAAMINE COMPLEX WITH AN ALCOHOL PENDANT : ELUCIDATION OF THE ROLES OF SER-102 AND ZINC(II) IN ALKALINE PHOSPHATASE , 1995 .

[17]  A. Bianchi,et al.  4,7,10,23-Tetramethyl-17-oxa-1,4,7,10,13,23-hexaazabicyclo[11.7.5]pentacosane (L), a Two-Binding-Site Ligand for the Assembly of the [Zn2(.mu.-OH)2]2+ Cluster , 1995 .

[18]  Laura E. Pence,et al.  Carboxylate- and Phosphodiester-Bridged Dinuclear Magnesium(II) Complexes , 1995 .

[19]  Y. Tong,et al.  A Dinuclear Zinc Carboxylate Complex of Biological Relevance. Crystal Structure of [Zn2(bpy)2(MeCO2)3]ClO4 (bpy = 2,2'-Bipyridine) , 1994 .

[20]  M. Hursthouse,et al.  Intensive hydrogen bonding in a monomeric magnesium salicylate tetrahydrate , 1993 .

[21]  B. Krebs,et al.  A Phenoxy-Bridged Homodinuclear Zn Complex with an Unusual Coordination Sphere; Model Compound for the Active Site of Phospholipase C† , 1992 .

[22]  K. Wieghardt,et al.  Mono- and dinuclear zinc(II) complexes of biological relevance. Crystal structures of [L2Zn](PF6)2, [L'Zn(O2CPh)2(H2O)], [L'2Zn2(.mu.-OH)2](ClO4)2, and [L'2Zn2(.mu.-OH)(.mu.-CH3CO2)2](ClO4).cntdot.H2O (L = 1,4,7-triazacyclononane, L' = 1,4,7-trimethyl-1,4,7-triazacyclononane) , 1992 .

[23]  G. Parkin,et al.  Zinc Pyrazolylborate Complexes Relevant to the Biological Function of Carbonic Anhydrase , 1992 .

[24]  M. Mikuriya,et al.  Synthesis and characterization of trinuclear Schiff-base complexes containing sulphur dioxide or hydrogensulphite ions as bridging groups. Crystal structure of [Zn{(µ-CH3CO2)(salpd-µ-O,O′)Cu}2][salpd = propane-1,3-diylbis(salicylideneiminate)] , 1990 .

[25]  D. L. Wilkinson,et al.  Metal ion binding by amino acids. Preparation and crystal structures of magnesium, strontium, and barium L‐glutamate hydrates , 1989 .

[26]  E. M. Holt,et al.  Alkali and alkaline earth complexation to derivatives of salicylic acid: [Calcium(p-aminosalicylate)(acetate)(H2O)] (H2O), magnesium(salicylate)2(H2O)4, magnesium(p-aminosalicylate)2(H2O)4, magnesium(2, 6-pyridinedicarboxylate)-(H2O)3(H2O)2 and sodium(p-aminosalicylate)(H2O)2 , 1989 .

[27]  Colin Eaborn,et al.  Comprehensive Coordination Chemistry , 1988 .

[28]  C. Spiro,et al.  The synthesis, redox properties, and ligand binding of heterobinuclear transition-metal macrocyclic ligand complexes. Measurement of an apparent delocalization energy in a mixed-valent copper(I)copper(II) complex , 1981 .

[29]  Karl E. Wiegers,et al.  A kinetic study of the reaction of N,N'-ethylenebis(salicylideneiminato)cobalt(II) with bis(hexafluoroacetylacetonato)copper(II) , 1977 .

[30]  H. O̅kawa,et al.  Binuclear Metal Complexes. III. Preparation and Properties of Mononuclear and Binuclear Copper(II) and Nickel(II) Complexes of New Macrocycles and Their Related Ligands , 1972 .

[31]  H. Sigel,et al.  Discriminating behavior of metal ions and ligands with regard to their biological significance , 1970 .

[32]  F. H. Moore,et al.  The crystal structure of NN′-disalicylidene-ethylenediaminezinc(II) monohydrate , 1966 .

[33]  P. Pfeiffer,et al.  Tricyclische orthokondensierte Nebenvalenzringe , 1933 .

[34]  J. C. Duff,et al.  273. Reactions between hexamethylenetetramine and phenolic compounds. Part I. A new method for the preparation of 3- and 5-aldehydosalicylic acids , 1932 .