Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach

A geometrical probability measure is proposed for calculating the effective conduction electron mean free path of an arbitrary shape convex particle. It is shown that the plasmon widths determined from this mean free path are consistent with exact quantum mechanical widths for simple particle shapes. We use the mean free path formula to evaluate size and shape dependent dielectric functions and extinction spectra for silver spheroids, square prisms, truncated tetrahedrons, and cylinders.

[1]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[2]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[3]  C. Foss,et al.  Metal Nanoparticles: Synthesis, Characterization, and Applications , 2001 .

[4]  F. Aussenegg,et al.  Near-field optical response of a two-dimensional grating of gold nanoparticles , 2001 .

[5]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[6]  J. Kottmann,et al.  Accurate solution of the volume integral equation for high-permittivity scatterers , 2000 .

[7]  N. Richard Light Scattering by Supported Metallic Nanostructures: Polarization and Spectroscopy in the Near‐Field Zone , 2000 .

[8]  J. Kottmann,et al.  Spectral response of plasmon resonant nanoparticles with a non-regular shape. , 2000, Optics express.

[9]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[10]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .

[11]  George C. Schatz,et al.  Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling , 1999 .

[12]  M. Quinten,et al.  Scattering and extinction of evanescent waves by small particles , 1999 .

[13]  Christian Hafner,et al.  Post-modern Electromagnetics: Using Intelligent MaXwell Solvers , 1999 .

[14]  George C. Schatz,et al.  Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters , 1999 .

[15]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[16]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[17]  Zhong Lin Wang,et al.  Kinetically Controlled Growth And Shape Formation Mechanism Of Platinum Nanoparticles , 1998, Microscopy and Microanalysis.

[18]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[19]  P. Flatau,et al.  Improvements in the discrete-dipole approximation method of computing scattering and absorption. , 1997, Optics letters.

[20]  P. M. Tomchuk,et al.  Optical absorption by small metallic particles , 1997 .

[21]  C. R. Martin,et al.  Dynamical Maxwell-Garnett optical modeling of nanogold-porous alumina composites : Mie and kappa influence on absorption maxima , 1997 .

[22]  Franz R. Aussenegg,et al.  Thin films by regular patterns of metal nanoparticles: Tailoring the optical properties by nanodesign , 1996 .

[23]  F. Aussenegg,et al.  Optical dichroism of lithographically designed silver nanoparticle films. , 1996, Optics letters.

[24]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[25]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[26]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[27]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[28]  R. V. Duyne,et al.  Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass , 1993 .

[29]  N. Chernov New proof of Sinai's formula for the entropy of hyperbolic billiard systems. Application to Lorentz gases and Bunimovich stadiums , 1991 .

[30]  V. Subrahmanyam,et al.  Optical absorption in small metal particles , 1989 .

[31]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[32]  R. Kubo,et al.  Electronic Properties of Small Particles , 1984 .

[33]  George C. Schatz,et al.  Plasmon resonance broadening in small metal particles , 1983 .

[34]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[35]  G. Schatz,et al.  Plasmon resonance broadening in spheroidal metal particles , 1983 .

[36]  P. Liao,et al.  Surface-enhanced Raman scattering on gold and aluminum particle arrays. , 1982, Optics letters.

[37]  D. M. Wood,et al.  Quantum size effects in the optical properties of small metallic particles , 1982 .

[38]  U. Kreibig,et al.  Small silver particles in photosensitive glass: Their nucleation and growth , 1976 .

[39]  R. Ruppin,et al.  Size and Shape Effects on the Broadening of the Plasma Resonance Absorption in Metals , 1976 .

[40]  L. Santaló Integral geometry and geometric probability , 1976 .

[41]  Joseph L. Birman,et al.  Electronic States and Optical Transitions in Solids , 1976 .

[42]  U. Kreibig,et al.  Dielectric function and plasma resonances of small metal particles , 1975 .

[43]  P. Ascarelli,et al.  Quantum size effects in metal particles and thin films by an extended RPA , 1974 .

[44]  U. Kreibig,et al.  The limitation of electron mean free path in small silver particles , 1969 .

[45]  L. Sander Quantum theory of perpendicular electrical conductivity in a thin metallic film , 1967 .

[46]  Arisato Kawabata,et al.  Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption , 1966 .

[47]  J. Euler Ultraoptische Eigenschaften von Metallen und mittlere freie Weglänge der Leitungselektronen , 1954 .