Memcapacitor response under step and sinusoidal voltage excitations

Recently, mem-elements have become fundamental in the circuit theory through promising potential applications based on the built-in memory-properties of these elements. In this paper, the mathematical analysis of the memcapacitor model is derived and the effect of different voltage excitation signals is studied for the linear dopant model. General closed form expressions and analyses are presented to describe the memcapacitor behavior under DC step and sinusoidal voltage excitations. Furthermore, the step and sinusoidal responses are used to analyze the memcapacitor response under any periodic signal using Fourier series expansion where the effect of the DC component on the output response is investigated. In addition, the stored energy in the memcapacitor under step, sinusoidal and square wave excitations is discussed. Moreover, the analysis of series and parallel connection of N non-matched memcapacitors in general is introduced and special cases of matched memcapacitors are discussed. The derived equations are verified using SPICE simulations showing great matching.

[1]  Khaled N. Salama,et al.  Memristor-based memory: The sneak paths problem and solutions , 2013, Microelectron. J..

[2]  Khaled N. Salama,et al.  Improved memristor-based relaxation oscillator , 2013, Microelectron. J..

[3]  Ahmed Gomaa Radwan,et al.  Meminductor Response Under Periodic Current Excitations , 2014, Circuits Syst. Signal Process..

[4]  Yuriy V. Pershin,et al.  Putting Memory Into Circuit Elements: Memristors, Memcapacitors, and Meminductors [Point of View] , 2009 .

[5]  Ahmed Gomaa Radwan,et al.  Generalized Analysis of Symmetric and Asymmetric Memristive Two-Gate Relaxation Oscillators , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Nasser Masoumi,et al.  Design investigation of nanoelectronic circuits using crossbar-based nanoarchitectures , 2013, Microelectron. J..

[7]  Leon O. Chua,et al.  Device modeling via nonlinear circuit elements , 1980 .

[8]  Christofer Toumazou,et al.  Two centuries of memristors. , 2012, Nature materials.

[9]  C. Toumazou,et al.  A Versatile Memristor Model With Nonlinear Dopant Kinetics , 2011, IEEE Transactions on Electron Devices.

[10]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[11]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[12]  A. Zemanian Walk-Based Transfinite Graphs and Networks , 2004 .

[13]  Ahmed S. Elwakil,et al.  A Simple Model of Double-Loop Hysteresis Behavior in Memristive Elements , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Dalibor Biolek,et al.  Mutator for transforming memristor into memcapacitor , 2010 .

[15]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[16]  VourkasIoannis,et al.  Memristor-based combinational circuits , 2014 .

[17]  Matthew D. Pickett,et al.  SPICE modeling of memristors , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[18]  Dalibor Biolek,et al.  Behavioral Modeling of Memcapacitor , 2011 .

[19]  Hyongsuk Kim,et al.  Expandable Circuits of Mutator-Based Memcapacitor Emulator , 2013, Int. J. Bifurc. Chaos.

[20]  K.N. Salama,et al.  Non linear dynamics of memristor based 3rd order oscillatory system , 2012, Microelectron. J..

[21]  L. Chua Memristor-The missing circuit element , 1971 .

[22]  Massimiliano Di Ventra,et al.  Ionic memcapacitive effects in nanopores. , 2010, Nano letters.

[23]  Robert Kozma,et al.  Advances in Neuromorphic Memristor Science and Applications , 2012, Springer Series in Cognitive and Neural Systems.

[24]  Sung-Mo Kang,et al.  Compact Models for Memristors Based on Charge-Flux Constitutive Relationships , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[25]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[26]  Georgios Ch. Sirakoulis,et al.  SPICE modeling of nonlinear memristive behavior , 2015, Int. J. Circuit Theory Appl..

[27]  M. E. Fouda,et al.  On the mathematical modeling of series and parallel memcapacitors , 2013, 2013 25th International Conference on Microelectronics (ICM).

[28]  Massimiliano Di Ventra,et al.  Memristive circuits simulate memcapacitors and meminductors , 2009, 0910.1583.

[29]  Ahmed G. Radwan,et al.  Charge controlled memristor-less memcapacitor emulator , 2012 .

[30]  Ioannis Vourkas and Georgios Ch. Sirakoulis Recent Progress and Patents on Computational Structures and Methods with Memristive Devices , 2013 .

[31]  Dalibor Biolek,et al.  SPICE modelling of memcapacitor , 2010 .

[32]  H. Iu,et al.  Design of a memcapacitor emulator based on a memristor , 2012 .

[33]  Dalibor Biolek,et al.  SPICE modeling of memristive, memcapacitative and meminductive systems , 2009, 2009 European Conference on Circuit Theory and Design.

[34]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[35]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[36]  Mohammed Affan Zidan,et al.  On the mathematical modeling of memristors , 2010, 2010 International Conference on Microelectronics.

[37]  Ahmed Gomaa Radwan,et al.  Resistive-less memcapacitor-based relaxation oscillator , 2015, Int. J. Circuit Theory Appl..

[38]  Ahmed Gomaa Radwan,et al.  Memristor‐based voltage‐controlled relaxation oscillators , 2014, Int. J. Circuit Theory Appl..

[39]  Georgios Ch. Sirakoulis,et al.  Memristor-based combinational circuits: A design methodology for encoders/decoders , 2014, Microelectron. J..