Deep Compression of Convolutional Neural Networks with Low-rank Approximation

[1]  Eunhyeok Park,et al.  Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications , 2015, ICLR.

[2]  Peter Bro Miltersen,et al.  Strategy Iteration Is Strongly Polynomial for 2-Player Turn-Based Stochastic Games with a Constant Discount Factor , 2010, JACM.

[3]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[4]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[5]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[6]  Mi-Young Lee,et al.  Hierarchical Compression of Deep Convolutional Neural Networks on Large Scale Visual Recognition for Mobile Applications , 2016 .

[7]  Yixin Chen,et al.  Compressing Convolutional Neural Networks in the Frequency Domain , 2015, KDD.

[8]  Soundar R. T. Kumara,et al.  Cyber-physical systems in manufacturing , 2016 .

[9]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[10]  Yixin Chen,et al.  Compressing Convolutional Neural Networks , 2015, ArXiv.

[11]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[12]  Syed Mahfuzul Aziz,et al.  Review of Cyber-Physical System in Healthcare , 2014, Int. J. Distributed Sens. Networks.

[13]  Ivan V. Oseledets,et al.  Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition , 2014, ICLR.

[14]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[15]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[16]  Jian Sun,et al.  Accelerating Very Deep Convolutional Networks for Classification and Detection , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.