The α-Arboricity of Complete Uniform Hypergraphs

α-acyclicity is an important notion in database theory. The α-arboricity of a hypergraph ℋ is the minimum number of α-acyclic hypergraphs that partition the edge set of ℋ. The α-arboricity of the complete 3-uniform hypergraph is determined completely.

[1]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[2]  Mike J. Grannell,et al.  Steiner systems S(5, 6, v) with v = 72 and 84 , 1998, Math. Comput..

[3]  M. Grannell Steiner systems S(5,6, v) with . . . , 1997 .

[4]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[5]  Anthony K. H. Tung,et al.  Arboricity: An acyclic hypergraph decomposition problem motivated by database theory , 2012, Discret. Appl. Math..

[6]  Jian-fang Wang,et al.  Enumeration of Maximum Acyclic Hypergraphs , 2002 .

[7]  Dean G. Hoffman,et al.  A New Class of Group Divisible Designs with Block Size Three , 1992, J. Comb. Theory, Ser. A.

[8]  Catriel Beeri,et al.  Properties of acyclic database schemes , 1981, STOC '81.

[9]  Clement Yu,et al.  On determining tree query membership of a distributed query , 1980 .

[10]  H. Hanani,et al.  On steiner systems , 1964 .

[11]  Ronald Fagin,et al.  Degrees of acyclicity for hypergraphs and relational database schemes , 1983, JACM.

[12]  Haim Hanani,et al.  On Quadruple Systems , 1960, Canadian Journal of Mathematics.

[13]  Clement T. Yu,et al.  An algorithm for tree-query membership of a distributed query , 1979, COMPSAC.

[14]  Li,et al.  ON ACYCLIC AND CYCLIC HYPERGRAPHS , 2002 .

[15]  B. Devadas Acharya,et al.  Hypergraphs with cyclomatic number zero, triangulated graphs, and an inequality , 1982 .

[16]  Mihalis Yannakakis,et al.  Algorithms for Acyclic Database Schemes , 1981, VLDB.

[17]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[18]  Ian Anderson,et al.  TRIPLE SYSTEMS (Oxford Mathematical Monographs) , 2000 .

[19]  Ronald Fagin,et al.  A simplied universal relation assumption and its properties , 1982, TODS.