An Efficient QBIR System Using Adaptive Segmentation and Multiple Features

Abstract Query by Image Content Retrieval abbreviated as QBIR, has become new thirst now a days. By using this systems, user can retrieve the similar images of an already existed image (or) a rough sketch (or) a symbolic representation. To make more efficient and user friendly QBIR multiple features areemployed. This paper proposes a novel approach for image retrieval using adaptive k-means clustering and shape, texture features. The experimental results portraystheperformance of the proposed retrieval system in terms of better precision. To evaluate the proposed method COIL and MPEG-7 shape 1 datasets are used.