Perturbation and numerical methods for computing the minimal average energy
暂无分享,去创建一个
[1] John William Neuberger,et al. Sobolev gradients and differential equations , 1997 .
[2] Strikte Konvexität für Variationsprobleme auf demn-dimensionalen Torus , 1991 .
[3] W. Senn. Differentiability properties of the minimal average action , 1995 .
[4] V. Bangert. The existence of gaps in minimal foliations , 1987 .
[5] V. Bangert. On minimal laminations of the torus , 1989 .
[6] V. Bangert,et al. A uniqueness theorem for Zn-periodic variational problems , 1987 .
[7] L. Chierchia,et al. A note on quasi-periodic solutions of some elliptic systems , 1996 .
[8] Timothy Blass,et al. A Comparison Principle for a Sobolev Gradient Semi-Flow , 2009, 0910.2214.
[9] J. Moser. Minimal solutions of variational problems on a torus , 1986 .
[10] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[11] Variational analysis; critical extremals and Sturmian extensions , 1973 .
[12] L. Nirenberg,et al. On elliptic partial differential equations , 1959 .
[13] Tosio Kato. Perturbation theory for linear operators , 1966 .
[14] R. Llave,et al. A generalization of Aubry–Mather theory to partial differential equations and pseudo-differential equations , 2009 .