Edge-Forming Methods for Image Zooming

The article is concerned with edge-forming methods to be applied as a post-process for image zooming. Image zooming via standard interpolation methods often produces the so-called checkerboard effect, in particular, when the magnification factor is large. In order to remove the artifact and to form reliable edges, a nonlinear semi-discrete model and its numerical algorithm are suggested along with anisotropic edge-forming numerical schemes. The algorithm is analyzed for stability and choices of parameters. For image zooming by integer factors, a few iterations of the algorithm can form clear and sharp edges for gray-scale images. Various examples are presented to show effectiveness and efficiency of the newly-suggested edge-forming strategy.

[1]  Thomas Martin Deserno,et al.  Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.

[2]  Seongjai Kim,et al.  PDE-based image restoration: a hybrid model and color image denoising , 2006, IEEE Transactions on Image Processing.

[3]  Dimitris Anastassiou,et al.  Subpixel edge localization and the interpolation of still images , 1995, IEEE Trans. Image Process..

[4]  T. F. Russell,et al.  Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media , 1985 .

[5]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[6]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[7]  J. Udupa,et al.  An objective comparison of 3-D image interpolation methods , 1998, IEEE Transactions on Medical Imaging.

[8]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[9]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[10]  Jayaram K. Udupa,et al.  A task-specific evaluation of three-dimensional image interpolation techniques , 1999, IEEE Transactions on Medical Imaging.

[11]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[12]  Seongjai Kim,et al.  Edge-forming methods for color image zooming , 2006, IEEE Transactions on Image Processing.

[13]  Max A. Viergever,et al.  Registration-based interpolation , 2004, IEEE Transactions on Medical Imaging.

[14]  J. Douglas,et al.  A general formulation of alternating direction methods , 1964 .

[15]  François Malgouyres,et al.  Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..

[16]  Sheila S. Hemami,et al.  Regularity-preserving image interpolation , 1999, IEEE Trans. Image Process..

[17]  Jim Douglas,et al.  IMPROVED ACCURACY FOR LOCALLY ONE-DIMENSIONAL METHODS FOR PARABOLIC EQUATIONS , 2001 .

[18]  Jim Douglas,et al.  Numerical solution of two‐dimensional heat‐flow problems , 1955 .

[19]  V. Thomée,et al.  Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data , 1989 .

[20]  Tony F. Chan,et al.  Variational Restoration of Nonflat Image Features: Models and Algorithms , 2001, SIAM J. Appl. Math..

[21]  Seongjai Kim,et al.  Edge-Forming Methods for Image Zooming: Color Images , 2005 .

[22]  Stanley Osher,et al.  Explicit Algorithms for a New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal , 2000, SIAM J. Sci. Comput..

[23]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[24]  Moe Razaz,et al.  Comparison of an iterative deconvolution and Wiener filtering for image restoration , 1997 .

[25]  François Malgouyres,et al.  Total variation based interpolation , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[26]  J. J. Douglas On the Numerical Integration of $\frac{\partial ^2 u}{\partial x^2 } + \frac{\partial ^2 u}{\partial y^2 } = \frac{\partial u}{\partial t}$ by Implicit Methods , 1955 .

[27]  Michael Unser,et al.  High-quality image resizing using oblique projection operators , 1998, IEEE Trans. Image Process..

[28]  Patrizio Campisi,et al.  Multichannel blind image deconvolution using the Bussgang algorithm: spatial and multiresolution approaches , 2003, IEEE Trans. Image Process..

[29]  Jr. Jim Douglas On Incomplete Iteration for Implicit Parabolic Difference Equations , 1961 .

[30]  Richard E. Ewing,et al.  Incomplete Iteration for Time-Stepping a Galerkin Method for a Quasilinear Parabolic Problem , 1979 .