High-Quality Reference Genome Sequence for the Oomycete Vegetable Pathogen Phytophthora capsici Strain LT1534

The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads. ABSTRACT The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads.

[1]  J. Stajich,et al.  Funannotate v1.8.1: Eukaryotic genome annotation , 2020 .

[2]  M. Zhang,et al.  A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1 , 2020, Molecular plant pathology.

[3]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[4]  Wenbo Ma,et al.  The RXLR effector PcAvh1 is required for full virulence of Phytophthora capsici. , 2019, Molecular plant-microbe interactions : MPMI.

[5]  D. Shen,et al.  A Phytophthora capsici Effector Targets ACD11 Binding Partners that Regulate ROS-Mediated Defense Response in Arabidopsis. , 2019, Molecular plant.

[6]  The UniProt Consortium,et al.  UniProt: a worldwide hub of protein knowledge , 2018, Nucleic Acids Res..

[7]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[8]  L. Quesada-Ocampo,et al.  Analysis of microsatellites from transcriptome sequences of Phytophthora capsici and applications for population studies , 2018, Scientific Reports.

[9]  Neil D. Rawlings,et al.  The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database , 2017, Nucleic Acids Res..

[10]  Robert M. Waterhouse,et al.  BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics , 2017, bioRxiv.

[11]  Silvio C. E. Tosatto,et al.  InterPro in 2017—beyond protein family and domain annotations , 2016, Nucleic Acids Res..

[12]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[13]  S. Salzberg,et al.  Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the mega-reads algorithm , 2016, bioRxiv.

[14]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[15]  D. Shen,et al.  A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus , 2015, PloS one.

[16]  James K. Hane,et al.  CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts , 2015, BMC Genomics.

[17]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[18]  Leena Salmela,et al.  LoRDEC: accurate and efficient long read error correction , 2014, Bioinform..

[19]  Adam M Phillippy,et al.  Long-read, whole-genome shotgun sequence data for five model organisms , 2014, Scientific Data.

[20]  J. Vega-Arreguín,et al.  Recognition of an Avr3a homologue plays a major role in mediating nonhost resistance to Phytophthora capsici in Nicotiana species. , 2014, Molecular plant-microbe interactions : MPMI.

[21]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[22]  Xiao-Ren Chen,et al.  RNA-Seq Reveals Infection-Related Gene Expression Changes in Phytophthora capsici , 2013, PloS one.

[23]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[24]  P. Hedley,et al.  Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity , 2013, PloS one.

[25]  James R. Knight,et al.  Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. , 2012, Molecular plant-microbe interactions : MPMI.

[26]  E. Huitema,et al.  The oomycete broad-host-range pathogen Phytophthora capsici. , 2012, Molecular plant pathology.

[27]  L. Quesada-Ocampo,et al.  Investigating the genetic structure of Phytophthora capsici populations. , 2011, Phytopathology.

[28]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[29]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[30]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[31]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[32]  K. Lamour,et al.  A strategy for recovering high quality genomic DNA from a large number of Phytophthora isolates. , 2006, Mycologia.

[33]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[34]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[35]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.