Multistep direct reactions at low energies

The cross sections for neutron inelastic scattering by niobium at 20 MeV and for the charge-exchange (p,n) reaction on copper at 27 MeV have been calculated using the multistep direct reaction theory of Feshbach, Kerman and Koonin [1]. The theory was modified to include the non-DWBA matrix elements and the collective vibrations. The results show enhanced contributions from two-, three- and four-step direct reactions in agreement with experiment.

[1]  A. Marcinkowski,et al.  Analysis of low-energy direct reactions and the novel one-step cross section , 1999 .

[2]  T. Kawano Microscopic calculation of the multistep compound process , 1999 .

[3]  A. Marcinkowski,et al.  Are low-energy direct reactions mainly onestep? , 1998 .

[4]  A. Marcinkowski,et al.  A new multistep direct reaction mechanism: Collective excitations in the continuum , 1996 .

[5]  Chadwick,et al.  Linking of direct and compound chains in multistep nuclear reactions. , 1995, Physical review. C, Nuclear physics.

[6]  A. Marcinkowski,et al.  Gradual absorption of fast neutrons in niobium , 1994 .

[7]  C. E. Brient,et al.  Neutron emission cross sections at low bombarding energies and the novelty in multistep compound reaction model , 1993 .

[8]  Koning Aj,et al.  Computational comparison of quantum-mechanical models for multistep direct reactions. , 1993 .

[9]  J. Speth Electric and magnetic giant resonances in nuclei , 1991 .

[10]  A. Marcinkowski,et al.  Neutron emission cross sections on 93Nb and 209Bi at 20 MeV incident energy , 1991 .

[11]  J. M. Akkermans,et al.  Randomness in multi-step direct reactions , 1991 .

[12]  S. Koonin,et al.  Computational Nuclear Physics I , 1991 .

[13]  A. Woude The Electric Giant Resonances , 1991 .

[14]  Kalka,et al.  Statistical multistep reactions: Application. , 1989, Physical review. C, Nuclear physics.

[15]  A. Marcinkowski,et al.  Neutron emission cross sections on 184W at 11.5 and 26 MeV and the neutron-nucleus scattering mechanism☆ , 1989 .

[16]  J. M. Irvine,et al.  Computational nuclear physics , 1988 .

[17]  M. Trabandt,et al.  Precompound emission in the reaction 65Cu(p, xn) and the nucleon-nucleon scattering mechanism , 1985 .

[18]  M. Matoba,et al.  Comment on application of statistical multi-step direct emission theory to a neutron-emitting reaction , 1984 .

[19]  C. E. Brient,et al.  NEUTRON EMISSION CROSS SECTIONS AT 25. 7 MeV: 51V, 56Fe, 65Cu, 93Nb, AND 209Bi. , 1983 .

[20]  G. A. Needham,et al.  Excitation of analog isovector giant resonances via the (n, p) reaction on 14N and 16O at 60MeV , 1982 .

[21]  T. Udagawa,et al.  Multistep direct reaction analysis of continuum spectra in reactions induced by light ions , 1982 .

[22]  M. Hussein,et al.  The statistical multistep direct emission theory revisited , 1982 .

[23]  J. Hüfner,et al.  One, two, infinity: A pragmatic approach to nuclear precompound reactions , 1980 .

[24]  Herman Feshbach,et al.  The statistical theory of multi-step compound and direct reactions , 1980 .

[25]  H. Vonach,et al.  Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250 , 1973 .

[26]  F. C. Williams Particle-hole state density in the uniform spacing model , 1971 .

[27]  P. Hodgson,et al.  The calculation of neutron cross-sections from optical potentials , 1964 .

[28]  S. Fernbach,et al.  Optical-Model Analyses of Scattering of 4.1-, 7-, and 14-Mev Neutrons by Complex Nuclei , 1958 .