Metal–Phenolic Networks as a Universal Aqueous Dispersing and Immobilizing Agent for Nanocarbon Materials: A Facile Strategy for Synthesis of Electronic and Energy Materials in the Aqueous Phase

[1]  Haritha Hareendrakrishnakumar,et al.  Synergistic Restriction to Polysulfides by a Carbon Nanotube/Manganese Sulfide-Decorated Separator for Advanced Lithium–Sulfur Batteries , 2022, Energy & Fuels.

[2]  A. Jang,et al.  Electrochemical Transparency of Graphene. , 2022, ACS nano.

[3]  F. Caruso,et al.  Metal Ion-Directed Functional Metal-Phenolic Materials. , 2022, Chemical reviews.

[4]  Jingyu Sun,et al.  Graphdiyne/Graphene/Graphdiyne Sandwiched Carbonaceous Anode for Potassium-Ion Batteries. , 2022, ACS nano.

[5]  Joseph J. Richardson,et al.  Metal–Phenolic Networks as Tunable Buffering Systems , 2021 .

[6]  Lingzhu Zhao,et al.  A flexible Cellulose/Methylcellulose gel polymer electrolyte endowing superior Li+ conducting property for lithium ion battery. , 2020, Carbohydrate polymers.

[7]  Jingpei Huo,et al.  Enhanced Visible-Light Photoelectrocatalytic Activity over a Polydiacetylene-Based Metal Complex with RGO Modified under Wastewater , 2020 .

[8]  Ulises A. Aregueta-Robles,et al.  Ambient Temperature Waterborne Polymer/rGO Nanocomposite Films: Effect of rGO Distribution on Electrical Conductivity. , 2019, ACS applied materials & interfaces.

[9]  Jinju Ma,et al.  Tannic Acid-A Universal Immobilization and Fixation Agent for Nanocarbon Materials: A Novel Strategy for Aqueous Fabrication of Functional Nanocarbon Coating onto Silicon-Based Substances , 2019, ACS Sustainable Chemistry & Engineering.

[10]  L. Zhuang,et al.  NiGa2O4/rGO Composite as Long-Cycle-Life Anode Material for Lithium-Ion Batteries. , 2019, ACS applied materials & interfaces.

[11]  P. Sivaraj,et al.  Structural and Electrical Properties of Bio-polymer Pectin with LiClO4 Solid Electrolytes for Lithium Ion Polymer Batteries , 2019, Materials Today: Proceedings.

[12]  J. Correa-Basurto,et al.  QSAR, DFT and molecular modeling studies of peptides from HIV-1 to describe their recognition properties by MHC-I , 2018, Journal of biomolecular structure & dynamics.

[13]  M. Collins,et al.  Stability and rheological study of sodium carboxymethyl cellulose and alginate suspensions as binders for lithium ion batteries , 2018 .

[14]  Peter N. Ciesielski,et al.  Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage. , 2017, Nano letters.

[15]  Penghui Shao,et al.  New Insight into the Aggregation of Graphene Oxide Using Molecular Dynamics Simulations and Extended Derjaguin-Landau-Verwey-Overbeek Theory. , 2017, Environmental science & technology.

[16]  Yuanyuan Song,et al.  Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[17]  Aaron M. Kushner,et al.  Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. , 2014, Nature materials.

[18]  K. L. Cho,et al.  Coordination-Driven Multistep Assembly of Metal-Polyphenol Films and Capsules , 2014 .

[19]  Céline Douat-Casassus,et al.  Plant polyphenols: chemical properties, biological activities, and synthesis. , 2011, Angewandte Chemie.

[20]  S. Nguyen,et al.  Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. , 2010, Small.

[21]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[22]  D. J. Price,et al.  A modified TIP3P water potential for simulation with Ewald summation. , 2004, The Journal of chemical physics.

[23]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[24]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .