Indications towards a stereoselectivity of the salt-induced peptide formation reaction

[1]  D. Cline On the physical origin of the homochirality of life , 2005, European Review.

[2]  B. Rode,et al.  Evaporation cycle experiments — A simulation of salt-induced peptide synthesis under possible prebiotic conditions , 1993, Origins of life and evolution of the biosphere.

[3]  A. Salam The role of chirality in the origin of life , 1991, Journal of Molecular Evolution.

[4]  W. Bonner Chirality Amplification – The Accumulation Principle Revisited , 1999, Origins of life and evolution of the biosphere.

[5]  Pedro Cintas Die Chiralität lebender Systeme: Hilfe von Kristallen und Oligopeptiden , 2002 .

[6]  P. Cintas Chirality of living systems: a helping hand from crystals and oligopeptides. , 2002, Angewandte Chemie.

[7]  P. Schwerdtfeger,et al.  D- or L-alanine: that is the question. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  K. Blum,et al.  Collisions with chiral molecules prepared by optical pumping , 2000 .

[9]  P. Schwerdtfeger,et al.  Fully relativistic ab initio calculations of the energies of chiral molecules including parity-violating weak interactions , 1999 .

[10]  C. Sotriffer,et al.  Are prions a relic of an early stage of peptide evolution?☆ , 1999, Peptides.

[11]  K. Soai,et al.  d- and l-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound , 1999 .

[12]  G. Pályi,et al.  Advances in BioChirality , 1999 .

[13]  B. Rode,et al.  Peptides and the origin of life1 , 1999, Peptides.

[14]  A. V. Zelewsky,et al.  Prädeterminierte Chiralität an Metallzentren , 1999 .

[15]  A. von Zelewsky,et al.  Predetermined Chirality at Metal Centers. , 1999, Angewandte Chemie.

[16]  S. Wozniak Optically induced circular and axial birefringence and dichroism in chiral liquids , 1998 .

[17]  Marcel Maeder,et al.  Second order global analysis: the evaluation of series of spectrophotometric titrations for improved determination of equilibrium constants , 1997 .

[18]  R. Gargallo,et al.  Acid‐base and copper (II) complexation equilibria of poly(inosinic)‐poly(cytidylic) , 1997 .

[19]  T. D. Lee Chien-Shiung Wu (1912–97) Experimental physicist, co-discoverer of parity violation , 1997, Nature.

[20]  W. Thiemann,et al.  KINETIC MODELLING AND INVERSE TREATMENT OF THE RADICAL MECHANISM OF THE LIQUID-PHASE AUTOXIDATION OF 1,2,3,4-TETRAHYDRONAPHTHALENE , 1996 .

[21]  B. Rode,et al.  Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions , 1995 .

[22]  L. Barron CP violation and molecular physics , 1994 .

[23]  Garay,et al.  Molecular handedness and chiral strength determined by matter-wave circular dichroism. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[24]  W. Thiemann,et al.  Chiral symmetry breaking: Experimental results and computer analysis of a liquid‐phase autoxidation , 1993 .

[25]  B. Rode,et al.  Ab initio calculations concerning the reaction mechanism of the copper(II) catalyzed glycine condensation in aqueous sodium chloride solution , 1992 .

[26]  B. Rode Monte Carlo simulation of the peptide condensing system 0.5 M cupric chloride/5 M sodium chloride/water , 1992 .

[27]  A. Garay,et al.  Differential interaction of chiral β-particles with enantiomers , 1990, Nature.

[28]  A. Favier,et al.  A theoretical study of the difference in the behavior ofl- andd-alanine toward the two inverse forms of kaolinite , 1990 .

[29]  B. Rode,et al.  Possible Role of Copper and Sodium Chloride in Prebiotic Evolution of Peptides , 1989 .

[30]  E. Commins Experiments on P and T violation in atoms at Berkeley , 1988 .

[31]  L. Addadi,et al.  Total asymmetric transformations at interfaces with centrosymmetric crystals: role of hydrophobic and kinetic effects in the crystallization of the system glycine/.alpha.-amino acids , 1988 .

[32]  M. Bouchiat,et al.  Optical experiments and weak interactions. , 1986, Science.

[33]  C. Girardet,et al.  Interaction potential and chiral discrimination between an alanine molecule and a quartz surface , 1986 .

[34]  G. Tranter The parity violating energy differences between the enantiomers of α-amino acids , 1985 .

[35]  C. Rubbia Experimental observation of the intermediate vector bosons W/sup +/, W/sup -/, and Z/sup 0/ , 1985 .

[36]  R. Hegstrom,et al.  New estimates of asymmetric decomposition of racemic mixtures by natural β-radiation sources , 1985, Nature.

[37]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[38]  G. Tranter,et al.  The parity-violating energy difference between enantiomeric molecules , 1983 .

[39]  R. Hegstrom β Decay and the origins of biological chirality: theoretical results , 1982, Nature.

[40]  S. Glashow Towards a unified theory: Threads in a tapestry , 1980 .

[41]  B. Douglas,et al.  Stereochemistry of Optically Active Transition Metal Compounds , 1980 .

[42]  W. Bonner,et al.  Adsorption of amino acid derivatives by d- and l-quartz. , 1977, Journal of the American Chemical Society.

[43]  W. Bonner,et al.  Asymmetric adsorption of DL-alanine hydrochloride by quartz. , 1976, The Journal of organic chemistry.

[44]  W. Bonner,et al.  Asymmetric Adsorption of Alanine by Quartz , 1974, Science.

[45]  Y Yamagata,et al.  A hypothesis for the asymmetric appearance of biomolecules on earth. , 1966, Journal of theoretical biology.

[46]  D. D. Hoppes,et al.  Experimental Test of Parity Conservation in Beta Decay , 1957 .

[47]  Chen Ning Yang,et al.  Question of Parity Conservation in Weak Interactions , 1956 .

[48]  G. Gran Determination of the equivalence point in potentiometric titrations. Part II , 1952 .