Temporal Generalization with Domain Generalization Graphs

This paper addresses the problem of using domain generalization graphs to generalize temporal data extracted from relational databases. A domain generalization graph associated with an attribute defines a partial order which represents a set of generalization relations for the attribute. We propose formal specifications for domain generalization graphs associated with calendar (date and time) attributes. These graphs are reusable (i.e. can be used to generalize any calendar attributes), adaptable (i.e. can be extended or restricted as appropriate for particular applications), and transportable (i.e. can be used with any database containing a calendar attribute).

[1]  Howard J. Hamilton,et al.  Efficient Attribute-Oriented Generalization for Knowledge Discovery from Large Databases , 1998, IEEE Trans. Knowl. Data Eng..

[2]  Mehmet A. Orgun,et al.  Embedding a timing system in TLC , 1998, Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157).

[3]  Ido Dagan,et al.  Knowledge Discovery in Textual Databases (KDT) , 1995, KDD.

[4]  Howard J. Hamilton,et al.  A Technique for Generalizing Temporal Durations in Relational Databases , 1998, FLAIRS Conference.

[5]  Sushil Jajodia,et al.  A general framework and reasoning models for time granularity , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[6]  Howard J. Hamilton,et al.  Machine Learning of Credible Classifications , 1997, Australian Joint Conference on Artificial Intelligence.

[7]  Nick Cercone,et al.  Parallel Knowledge Discovery Using Domain Generalization Graphs , 1997, PKDD.

[8]  Yuval Shahar,et al.  A Framework for Knowledge-Based Temporal Abstraction , 1997, Artif. Intell..

[9]  James P. Delgrande,et al.  Expressing Time Intervals and Repetition Within a Formalization of Calendars , 1998, Comput. Intell..

[10]  Howard J. Hamilton,et al.  Generalization for calendar attributes using domain generalization graphs , 1998, Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157).

[11]  Paolo Terenziani,et al.  Integrating Calendar Dates and Qualitative Temporal Constraints in the Treatment of Periodic Events , 1997, IEEE Trans. Knowl. Data Eng..

[12]  Johann Gamper A temporal reasoning and abstraction framework for model-based diagnosis systems , 1996, DISKI.

[13]  Howard J. Hamilton,et al.  Data visualization in the DB-Discover system , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[14]  Nikos A. Lorentzos,et al.  SQL Extension for Interval Data , 1997, IEEE Trans. Knowl. Data Eng..

[15]  Jiawei Han,et al.  Towards Efficient Induction Mechanisms in Database Systems , 1994, Theor. Comput. Sci..

[16]  X.S. Wang,et al.  Discovering Frequent Event Patterns with Multiple Granularities in Time Sequences , 1998, IEEE Trans. Knowl. Data Eng..

[17]  Jiawei Han,et al.  Data-Driven Discovery of Quantitative Rules in Relational Databases , 1993, IEEE Trans. Knowl. Data Eng..

[18]  J. Euzenat An algebraic approach to granularity in time representation , 1995 .