A generalization of the rectangular bounding method for continuous location models

Abstract We develop a generalized bounding method for the Weiszfeld iterative procedure used to solve the hyperbolically approximated l p -norm single- and multifacility minimum location problems. We also show that, at optimality, the solution to the bound problem coincides with the solution to the original location problem. We use this result to show that the rectangular bound value converges to the single-facility location problem optimal objective function value.

[1]  Robert F. Love,et al.  Bounding methods for facilities location algorithms , 1986 .

[2]  Jack Brimberg,et al.  Local convergence in a generalized Fermat-Weber problem , 1993, Ann. Oper. Res..

[3]  James G. Morris,et al.  Technical Note - Minisum Ip Distance Location Problems Solved via a Perturbed Problem and Weiszfeld's Algorithm , 1979, Oper. Res..

[4]  Robert F. Love,et al.  Technical Note - A Generalized Bounding Method for Multifacility Location Models , 1989, Oper. Res..

[5]  H. Juel,et al.  On a rational stopping rule for facilities location algorithms , 1984 .

[6]  George O. Wesolowsky,et al.  FACILITIES LOCATION: MODELS AND METHODS , 1988 .

[7]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[8]  Jack Brimberg,et al.  Global Convergence of a Generalized Iterative Procedure for the Minisum Location Problem with lp Distances , 1993, Oper. Res..

[9]  R. Love,et al.  Modelling Inter-city Road Distances by Mathematical Functions , 1972 .

[10]  Zvi Drezner,et al.  The Planar Two-Center and Two-Median Problems , 1984, Transp. Sci..

[11]  G. O. Wesolowsky,et al.  A Nonlinear Approximation Method for Solving a Generalized Rectangular Distance Weber Problem , 1972 .

[12]  R. Love,et al.  The convergence of the Weiszfeld algorithm , 2000 .

[13]  R. Love,et al.  Mathematical Models of Road Travel Distances , 1979 .

[14]  Robert F. Love,et al.  Technical Note - Solving Constrained Multi-Facility Location Problems Involving lp Distances Using Convex Programming , 1975, Oper. Res..

[15]  John A. White,et al.  On Solving Multifacility Location Problems using a Hyperboloid Approximation Procedure , 1973 .

[16]  R. L. Francis,et al.  Properties of a multifacility location problem involving euclidian distances , 1972 .

[17]  R. Love,et al.  Generalized hull properties for location problems , 1995 .

[18]  R. Love,et al.  A Stopping Rule for Facilities Location Algorithms , 1981 .

[19]  Robert F. Love,et al.  A new bounding method for single facility location models , 1989 .

[20]  Richard E. Wendell,et al.  A DUAL APPROACH FOR OBTAINING LOWER BOUNDS TO THE WEBER PROBLEM , 1984 .